更新时间:2023-06-21 18:44:03
指数函数及其图像与性质说课
一、说教材:
1、在教材中的地位和作用
本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。
二、说学情:
2、学情分析
心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。
此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的'去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
三、说教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。
过程与方法:让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。
情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。
四、说教学方法:
教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
(1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;
(2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。
(3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。
五、说教学过程:
1、导入新课(2分钟)
创设情境,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?
财主应付给打工者的工钱为1073741824分≈1073万元
(为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)
2、探索新知(7分钟)
问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?
问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?
归纳:函数中,指数x为自变量,底2为常数.
概念:一般地,形如的函数叫做指数函数,其中底()为常量.指数函数的定义域为,值域为
(设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。)
3、分组讨论(8分钟)
4、例题讲解(12分钟)
5、强化练习(8分钟)
6、课堂总结(2分钟)
7、布置作业(1分钟)
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.
2、教学目标的确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用
对数函数的性质解决简单的问题.
(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、
分析、归纳等逻辑思维能力.
(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数
学的精确和美妙之处,调动学生学习数学的积极性.
3、教学重点与难点
重点:对数函数的意义、图像与性质.
难点:对数函数性质中对于在与两种情况函数值的不同变化.
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生实验、观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透类比、数形结合、分类讨论等数学思想方法.
2、教学手段:
计算机多媒体辅助教学.
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)类比学习:与指数函数类比学习对数函数的图像与性质.
(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,
归纳得出对数函数的图像与性质.
(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,
使问题得以圆满解决.
四、说教程
1、温故知新
我通过复习细胞分裂问题,由指数函数引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数.
设计意图:既复习了指数函数和反函数的`有关知识,又与本节内容有密切关系,
有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生
分析问题的能力.
2、探求新知
在理解对数函数的意义的基础上,研究对数函数的图像与性质.关键是抓住对数函数与指数函数互为反函数的关系,图像关于直线对称,从而作出对数函数的图像.由学生自主作出对数函数和的图像后,引导学生填写所发表格(该表格一列填有在及两种情况下的图像与性质),通过类比学习,小组讨论,采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质.
在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”.另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识.
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、
观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,
协作构建起新的知识.这充分体现了基于建构主义学习理论的探究定
向性学习和主动合作式学习.
3、课堂研究,巩固应用
例1主要利用对数函数的定义域是来求解.在这个例题中,重点、难点是第三小题的理解.这一小题是课后练习“求函数(其中)的定义域”这道题目的变形.我觉得让学生直接解决课后练习有较大困难,因此设计了“求函数的定义域”这一小题;理解了这个小题,课后练习也就迎刃而解了.而在解题过程中,学生发现求解不等式是一个难点.我在解决这一难点时,采用了两种方法:一是启发学生将“0”写成1的对数,并且是写成,这样就可以利用对数函数的单调性求出不等式的解,最后向学生介绍不等式是一个对数不等式;二是引导学生观察对数函数的图像,通过数形结合来求解不等式.
例2利用对数函数的单调性,比较两个同底对数值的大小.在这个例题中,注意第三小题的点拨,要分底数及两种情况.
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充
分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的
解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.
4、课外研究
使学生学会知识的迁移,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题.
5、课堂小结
引导学生进行知识回顾,使学生对本节课有一个整体把握.从三方面进行小结:
(1)理解对数函数的意义;
(2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;
(3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的
解法,体会分类讨论的思想方法.
6、课外作业
公式无法显示,完整WORD文档点击下载此文件
《对数函数的图像与性质》说课稿
作为一名老师,时常要开展说课稿准备工作,编写说课稿助于积累教学经验,不断提高教学质量。说课稿应该怎么写才好呢?以下是小编帮大家整理的《对数函数的图像与性质》说课稿,希望对大家有所帮助。
一、说教材
1、教材的地位和作用
函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。
2、教学目标的.确定及依据
根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:
(1)知识目标:掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题。
(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。
(3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。
3、教学重点与难点
重点:对数函数的图像与性质。
难点:对数函数性质中对于在与两种情况函数值的不同变化。
二、说教法
学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的.教学目标,对于本节课我主要考虑了以下两个方面:
1、教学方法:
(1)启发引导学生观察、联想、思考、分析、归纳;
(2)采用“从特殊到一般”、“从具体到抽象”的方法;
(3)渗透数形结合、分类讨论等数学思想方法;
(4)用探究性教学、提问式教学和分层教学。
2、教学手段:
计算机多媒体辅助教学。
三、说学法
“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:
(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。
(2)主动式学习:学生自己归纳得出对数函数的图像与性质。
四、说教程
1、温故知新
我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。
设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。
2、探求新知
研究对数函数的图像与性质。关键是学生自主的对函数和的图像分析归纳,引导学生填写表格(该表格一列填有在及两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质。
在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。
设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。
3、课堂研究,巩固应用
例1主要利用对数函数的定义域是来求解。
例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数两种情况。
例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。
设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。
4、巩固练习
使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。
5、课堂小结
引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:
(1)掌握对数函数的图像与性质,体会数形结合的思想方法;
(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法。
6、作业:p97习题3,4,5
选做题6题
作为一名教师,时常需要编写说课稿,说课稿有助于提高教师的语言表达能力。快来参考说课稿是怎么写的吧!以下是小编为大家整理的数学《正切函数的定义、图像与性质》说课稿,仅供参考,大家一起来看看吧。
一、教材分析(说教材)
1、教材所处的地位和作用
本节内容是高中数学必修4第一章第七节的内容。它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题。
2、教学目标
知识与技能:
(1)能借助单位圆理解任意角的正切函数的定义。
(2)能画出y=tanx的图像。
(3)掌握正切线的基本性质。
(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题。
过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质。
情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣。
3、重点、难点以及确定的依据和处理的方法
重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象。对于正切函数来说由于定义域的不连续性导致了图像的间断性。所以要正确探索出图像和性质。处理方法是类比正余弦函数的图像和性质的研究。
难点:画正切函数的图像。依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图。在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像。
二、学情分析(说学法)
学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力。因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务。教师在重难点的地方给予提示和帮助即可。
三、教学策略(说教法)
(一)教学手段
一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述。所以对正切函数仍然采用了这样的方法。先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质。这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面。
(二)教学方法及其理论依据
如何突出重点,突破难点,从而实现教学目标。我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间。教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法。在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的`质疑点进行解释,最后老师再进行点评和补充。
四、教学流程
(一)复习回顾:正弦函数和余弦函数;
利用单位圆中的正弦线作出正弦函数的图像。
(二)自主探究:
1、正切函数的定义
请学生课前自主学习课本35页7.1的内容,明确以下几个问题:
(1)正切函数的定义及定义域。
(2)正切函数值在每个象限的符号。
(3)什么是正切线?怎样作?
(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?
分组讨论后解答这几个问题。
通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示。
2、正切函数的图像
让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评。以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像。
3、正切函数的性质
通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质。
(三)例题展示
例1求函数的定义域。
设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解。
例2利用正切函数图像求满足条件的角的范围。
设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题。
(四)课堂小结:学生自己先总结然后老师补充。
(五)思考问题:
1、正切函数是整个定义域上的增函数吗?为什么?
2、正切函数会不会在某一区间内是减函数?为什么?
数学《正切函数的定义、图像与性质》说课稿
作为一名教师,时常需要编写说课稿,说课稿有助于提高教师的语言表达能力。快来参考说课稿是怎么写的吧!以下是小编为大家整理的数学《正切函数的定义、图像与性质》说课稿,仅供参考,大家一起来看看吧。
一、教材分析(说教材)
1、教材所处的地位和作用
本节内容是高中数学必修4第一章第七节的内容。它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题。
2、教学目标
知识与技能:
(1)能借助单位圆理解任意角的正切函数的定义。
(2)能画出y=tanx的图像。
(3)掌握正切线的基本性质。
(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题。
过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质。
情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣。
3、重点、难点以及确定的依据和处理的方法
重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象。对于正切函数来说由于定义域的不连续性导致了图像的间断性。所以要正确探索出图像和性质。处理方法是类比正余弦函数的图像和性质的研究。
难点:画正切函数的图像。依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图。在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像。
二、学情分析(说学法)
学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力。因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务。教师在重难点的地方给予提示和帮助即可。
三、教学策略(说教法)
(一)教学手段
一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述。所以对正切函数仍然采用了这样的方法。先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质。这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面。
(二)教学方法及其理论依据
如何突出重点,突破难点,从而实现教学目标。我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间。教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法。在学生课前看书、独立完成思考、小组合作探究讨论的.基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充。
四、教学流程
(一)复习回顾:正弦函数和余弦函数;
利用单位圆中的正弦线作出正弦函数的图像。
(二)自主探究:
1、正切函数的定义
请学生课前自主学习课本35页7.1的内容,明确以下几个问题:
(1)正切函数的定义及定义域。
(2)正切函数值在每个象限的符号。
(3)什么是正切线?怎样作?
(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?
分组讨论后解答这几个问题。
通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示。
2、正切函数的图像
让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评。以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像。
3、正切函数的性质
通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质。
(三)例题展示
例1求函数的定义域。
设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解。
例2利用正切函数图像求满足条件的角的范围。
设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题。
(四)课堂小结:学生自己先总结然后老师补充。
(五)思考问题:
1、正切函数是整个定义域上的增函数吗?为什么?
2、正切函数会不会在某一区间内是减函数?为什么?
《正切函数的定义、图像与性质》说课稿
作为一名教职工,常常要写一份优秀的说课稿,编写说课稿是提高业务素质的有效途径。如何把说课稿做到重点突出呢?下面是小编整理的《正切函数的定义、图像与性质》说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。
一、教材分析(说教材)
1、教材所处的地位和作用
本节内容是高中数学必修4第一章第七节的内容。它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题。
2、教学目标
知识与技能:
(1)能借助单位圆理解任意角的正切函数的定义。
(2)能画出y=tanx的图像。
(3)掌握正切线的基本性质。
(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题。
过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质。
情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的.思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣。
3、重点、难点以及确定的依据和处理的方法
重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象。对于正切函数来说由于定义域的不连续性导致了图像的间断性。所以要正确探索出图像和性质。处理方法是类比正余弦函数的图像和性质的研究。
难点:画正切函数的图像。依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图。在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像。
二、学情分析(说学法)
学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力。因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务。教师在重难点的地方给予提示和帮助即可。
三、教学策略(说教法)
(一)教学手段
一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述。所以对正切函数仍然采用了这样的方法。先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质。这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面。
(二)教学方法及其理论依据
如何突出重点,突破难点,从而实现教学目标。我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间。教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法。在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充。
四、教学流程
(一)复习回顾:正弦函数和余弦函数;
利用单位圆中的正弦线作出正弦函数的图像。
(二)自主探究:
1、正切函数的定义
请学生课前自主学习课本35页7.1的内容,明确以下几个问题:
(1)正切函数的定义及定义域。
(2)正切函数值在每个象限的符号。
(3)什么是正切线?怎样作?
(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?
分组讨论后解答这几个问题。
通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示。
2、正切函数的图像
让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评。以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像。
3、正切函数的性质
通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质。
(三)例题展示
例1求函数的定义域。
设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解。
例2利用正切函数图像求满足条件的角的范围。
设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题。
(四)课堂小结:学生自己先总结然后老师补充。
(五)思考问题:
1、正切函数是整个定义域上的增函数吗?为什么?
2、正切函数会不会在某一区间内是减函数?为什么?
数学《正切函数的定义、图像与性质》说课稿范文
作为一名默默奉献的教育工作者,就有可能用到说课稿,说课稿可以帮助我们提高教学效果。那么什么样的说课稿才是好的呢?下面是小编为大家整理的数学《正切函数的定义、图像与性质》说课稿范文,希望对大家有所帮助。
一、教材分析(说教材)
1、教材所处的地位和作用
本节内容是高中数学必修4第一章第七节的内容、它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题。
2、教学目标
知识与技能:
(1)能借助单位圆理解任意角的正切函数的定义。
(2)能画出y=tanx的图像。
(3)掌握正切线的基本性质。
(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题。
过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质。
情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神、 通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣。
3、重点、难点以及确定的依据和处理的方法
重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象、对于正切函数来说由于定义域的不连续性导致了图像的间断性、所以要正确探索出图像和性质、处理方法是类比正余弦函数的图像和性质的研究。
难点:画正切函数的图像、依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图、在难点的处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像。
二、学情分析(说学法)
学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力、因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务、教师在重难点的地方给予提示和帮助即可。
三、教学策略(说教法)
(一)教学手段
一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述、所以对正切函数仍然采用了这样的方法、先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质、这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面、
(二)教学方法及其理论依据
如何突出重点,突破难点,从而实现教学目标、我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间、教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法、在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充。
四、教学流程
(一)复习回顾:正弦函数和余弦函数;
利用单位圆中的正弦线作出正弦函数的图像。
(二)自主探究:
1、正切函数的定义
请学生课前自主学习课本35页7、1的`内容,明确以下几个问题:
(1)正切函数的定义及定义域。
(2)正切函数值在每个象限的符号。
(3)什么是正切线?怎样作?
(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?
分组讨论后解答这几个问题。
通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示、
2、正切函数的图像
让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评、以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像。
3、正切函数的性质
通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质、
(三)例题展示
例1 求函数的定义域。
设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解。
例2 利用正切函数图像求满足条件的角的范围。
设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题。
(四)课堂小结:学生自己先总结然后老师补充。
(五)思考问题:
1、正切函数是整个定义域上的增函数吗?为什么?
2、正切函数会不会在某一区间内是减函数?为什么?
五、作业布置
完成相应的课后作业。
六、设计说明
1、板书说明:侧黑板留给学生展示,前黑板用来展示多媒体。
2、时间分配:
(一) 五分钟
(二)六分钟1、十分钟2、十二分钟3、五分钟
(三)五分钟
(四)一分钟
(五)一分钟
作为一无名无私奉献的教育工作者,时常要开展说课稿准备工作,认真拟定说课稿,说课稿应该怎么写呢?下面是小编帮大家整理的数学《正切函数的定义、图像与性质》说课稿,仅供参考,大家一起来看看吧。
一、教材分析(说教材)
1、教材所处的地位和作用
本节内容是高中数学必修4第一章第七节的内容。它前承正弦余弦函数的图像和性质,后启正切函数的诱导公式问题。
2、教学目标
知识与技能:
(1)能借助单位圆理解任意角的正切函数的定义。
(2)能画出y=tanx的图像。
(3)掌握正切线的基本性质。
(4)让学生亲身经历数学研究的过程,学会应用类比推理与数形结合的思想处理问题。
过程与方法:类比正、余弦函数的概念,引入正切函数的概念;让学生通过类比,联系正弦函数图像的作法,通过单位圆中的有向线段得到正切函数的图像;能学以致用,结合图像分析得到正切函数的性质。
情感态度与价值观:使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学生的学习积极性;培养学生分析问题、解决问题的能力;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。通过学生自主探究小组合作交流的过程体验探索的乐趣,增强团队意识,增强学习数学的兴趣。
3、重点、难点以及确定的依据和处理的方法
重点:正切函数的图像和性质是本节课的重点,其理论依据是任意函数的图像和性质都是紧密相连的,都是研究的重点对象。对于正切函数来说由于定义域的不连续性导致了图像的间断性。所以要正确探索出图像和性质。处理方法是类比正余弦函数的图像和性质的研究。
难点:画正切函数的图像。依据是正切线能准确画正切函数的图像,但不实用,在应用时一定要学会画简图。在难点的`处理上我先让学生通过自己画出特殊角的正切线并平移到直角坐标系中,让学生体会图像与X轴的交点,再利用定义域找到图像间断处的渐近线(用虚线),然后找到一个周期内的几个特殊点,利用周期性画出其它区间的图像。
二、学情分析(说学法)
学生已经有了研究正弦余弦函数图像和性质的经验,这种经验完全可以迁移到对正切函数图像和性质的研究中,在心理上也具备了一定的分辨能力和语言表达能力。因此采用自主合作探究式学习方法,让学生自己通过自学和与他人合作的方式来完成学习任务。教师在重难点的地方给予提示和帮助即可。
三、教学策略(说教法)
(一)教学手段
一般对于三角函数性质的研究总是先作图像,再通过图像来获得对函数性质的直观认识,然后再从代数的角度对性质进行严格的表述。所以对正切函数仍然采用了这样的方法。先根据已有的知识(类比正弦函数和余弦函数的图像与性质)来研究正切函数的图像,然后再根据图像来研究性质。这样处理主要是为了给学生提供研究数学的直观视角,在图像的引导下可以更加有效地研究性质,加入感性思维的成分,并使数形结合的思想体现的更加全面。
(二)教学方法及其理论依据
如何突出重点,突破难点,从而实现教学目标。我在教学中利用课前布置预习任务,课中学生讨论回答问题的形式进行教学,从而为重点和难点知识留下充分的学习时间。教学中坚持“以学生为主体,以教师为主导”的原则,即“以学生活动为主,教师讲述为辅,学生活动在前,教师点拨评价在后”的原则,采用学生参与程度高的自主探究教学法。在学生课前看书、独立完成思考、小组合作探究讨论的基础上,在教师课前了解学生学情的前提下,让一部分学生回答提出的问题,其他学生进行质疑讨论,教师对学生的质疑点进行解释,最后老师再进行点评和补充。
四、教学流程
(一)复习回顾:正弦函数和余弦函数;
利用单位圆中的正弦线作出正弦函数的图像。
(二)自主探究:
1、正切函数的定义
请学生课前自主学习课本35页7。1的内容,明确以下几个问题:
(1)正切函数的定义及定义域。
(2)正切函数值在每个象限的符号。
(3)什么是正切线?怎样作?
(4)正切函数是周期函数吗?如果是,周期与最小正周期分别是多少?
分组讨论后解答这几个问题。
通过学生自学探究,由学生自己把正切函数的定义以及相关问题,讨论并回答出来,教师对学生的一些知识疑惑点进行帮助提示。
2、正切函数的图像
让学生类比正弦函数图像的画法自己尝试画出正切函数的图像,对学生画出的正切函数图像进行点评。以鼓励为主然后让学生想一想怎样可以画出整个定义域内的正切函数图像。
3、正切函数的性质
通过多媒体展示,用平移正切线的方法,准确的画出正切函数的图像,并让学生看着图像再直观的理解性质。
(三)例题展示
例1求函数的定义域。
设计意图:让学生会进行整体代换问题,加强对正切函数定义域的理解。
例2利用正切函数图像求满足条件的角的范围。
设计意图:强调学生要学会利用图像来做题,注意区间的开闭问题。
(四)课堂小结:学生自己先总结然后老师补充。
(五)思考问题:
1、正切函数是整个定义域上的增函数吗?为什么?
2、正切函数会不会在某一区间内是减函数?为什么?
五、作业布置
完成相应的课后作业。
一、教材分析
这是本章的第二节,研究对象是反比例函数的图像及其性质,其学习以正比例函数的图像及其性质为基础,在学习过程中可以借助前面学习的正比例函数的有关知识和研究方法,确定研究方向,因势利导,从而类比形成新的知识结构体系,整个过程特别注重让学生自己探索发现,培养学生类比、观察、猜想、归纳等独立思考的能力,在函数知识里边,还渗透了数形结合的思想,方程的思想,“运动变化”的辩证唯物主义思想,并且能进一步加强代数与几何的联系.,可为后阶段学习一次函数、二次函数的有关知识打下良好的基础。
二、学情分析
我校这届学生,多是务工子女,基本能力和技能较低,因此在教学时要为学生创设自主探索合作交流的环境,以直观,操作观察,概括和交流作为重要的活动方式,通过这些活动逐步提高从函数图像中获取信息的能力,提高感知水平。
学生在第一节中已经学习过“正比例函数”的内容,对函数已经有了初步的认识,在此基础上研究讨论反比例函数图像及其性质对后继学习产生积极影响,再说学生可以结合实例经历列表、描点、作图等活动,理解函数的整体直观形象,为学生探索反比例函数的性质提供了思维活动空间,可以使学生更牢固地掌握由他们自己发现的反比例函数的性质。
三、教学目标
1 进一步熟悉画函数图像的主要步骤,能利用描点法正确画出反比例函数的图像。
2 逐步提高从函数图像中获取信息的能力,探索并掌握反比例函数图像的主要性质。
3 通过类比、观察、猜想、归纳等激发探究新知识的热情,经历体验知识产生、形成和发展的过程,增强学习数学的兴趣。
4 在动手作图的过程中,体会做中学的乐趣,养成勤于动手,乐于探索和与他人合作交流的习惯。
四、教学重点与难点
教学重点:理解反比例函数的图像,掌握反比例函数的性质
教学难点:对反比例函数性质的理解。
五、教法分析和学法指导
本课教学采用探讨研究法、发现法、讲、练结合法.其依据是:
⑴遵循教材的结构特点和学生的认知能力。
⑵教学方法改革发展的新趋势:注重启发式,加强对学生学法的研究和指导。
⑶教师的主导作用和学生的主体参与有机的结合。
六、教学过程
(一)创设问题情境,引入新课
师:同学们还记得我们学过的正比例函数吗?正比例函数的图像是什么图形?你在画图时需要采用哪几个步骤?
生:记得,是一条经过原点的直线。 (1)列表(2)描点(3)连线
设计意图:回顾正比例函数图像作法的基本步骤,为学习反比例函数的图像和性质做准备。
(二)提出问题,探究新知
师:上节课我们学习了反比例函数的一般解析式是什么?
生: 反比例函数的一般解析式是
师:请同学们来猜想一下反比例函数的图像是什么?让我们一起画个反比例函数的图像看看,好吗?
操 作:同桌两人分别画出反比例函数 或 的函数图像。(分组进行列表画图)(课前已经准备好方格纸片和彩色笔、铅笔)
按照研究正比例函数图像即一般函数图像的一般步骤,通过列表、描点、连线来画出它们的图像。
以小组为单位,先列出表格,再进行描点、连线。注意:①列表时自变量取值要均匀和对称②x≠0③选整数较好计算和描点。(教师提示)
设计意图:让学生亲自动手操作,会画反比例函数的图像,可以培养学生的动手能力,激发学生学好数学的兴趣,去为发现反比例函数的性质做准备。分组画图的目的是为后面的合作交流做铺垫。采用彩色笔,通过颜色变化,有利于反映和发现问题。
通过学生自己画的图像,经过仔细观察,从而得出反比例函数的图像是双曲线。(教师可做提示一般一个分支取4~6个点)
比 一 比:同桌两人分别画出函数 或 的图像,看谁画得又快又好。(展示学生作品)
设计意图:通过比一比的方式,提高学生的画图技能和计算能力,利用对好作品的展示又可激发学生学习的兴趣,增强自信心。
(三)探索比较,发现规律
师:下面大家分四人一小组讨论,根据大家所画出的函数图像,从以下几个方面出发,你能发现反比例函数的图像及性质有哪些?
1 你能发现它们的共同特征以及不同点吗?
2 函数图像分别位于哪几个象限?
3 在每一个象限内,y随的x变化有怎样的变化?
设计意图:提高学生从函数图像中获取信息的能力,探索并掌握反比例函数的主要性质,体会分类讨论的思想,数形结合思想的.运用,并引导学生积极参与探索活动,注意多和同伴交流看法。
师:讨论结束后,由各小组选代表说说讨论结果。
师生行为:
学生分组针对上面3个问题,结合画出的图形分类讨论,归纳总结出反比例函数的图像的性质:
(1)反比例函数y = (k为常数,k≠0)的图像是双曲线。
(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内y随x值的增大而减小。
(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内y随x值的增大而增大。
(四)运用新知、拓展训练
(抢答题)
1.反比例函数的解析式是 。它的图像是 。
2.当k< 0 时,反比例函数 的图像的两个分支分别分布在第 象限内;在每一象限中,y值随x值的增大而 。
3.已知函数 ,如果y随着x增大而减小,那么k的取值范围是 。
4.反比例函数 ,那么在x0时,y的值随x的增大而 。
5.在函数 中,当m= 时,它是反比例函数。y随x的增大而
6. 若两点(x1, y1),(x2, y2)反比例函数 的图像上有,且x1< x2<0,则y1与y2的关系是( )
A. y1> y2 B. y1< y2
C. y1=y2 D.大小无法确定
设计意图:检验学生对本课知识的掌握及应用情况。通过练习,既培养学生思维的敏捷性,又激发学生的参与和竞争意识.在抢答过程中,教师给予适当评讲,并积极调动学生的参与热情,让整个课堂充满活跃的气氛.
(五)归纳总结,布置作业
师:让学生谈谈收获(讨论后请几位学生发言)
1、你学到了哪些知识?
2、你还有哪些疑问?
设计意图:通过学生自由讨论、总结、概括本节所学习的内容,使学生进一步了解反比例函数的图像及其性质,让他们体验到学习数学的快乐,在交流中与全班同学分享。
思考题:
仔细观察反比例函数的图像,除已学过的性质外,还可以观察出什么特别的性质?
设计意图:此题是一个简单的开放性问题,为学有余力并对数学有浓厚兴趣的学生设计,目的是为他们提供一定的学习材料,给学生较大的思维空间和思考时间,培养其发散思维,鼓励学生在学习中发现和探索.
七、反思
1、同桌互动画图像,改变传统的被动接受知识的教学方式,鼓励学生自己探索、合作交流。对于我班部分个别学生来说画图技巧较弱,课后需再加强辅导。
2、由于本节课的内容与正比例函数有着密切联系,学生能在旧知识中寻找模型,而最后的运用新知、拓展训练中的第6题,提升了一定的高度,有一小部分同学不那么容易理解,需要进行适当的点拨。
指数函数及性质说课稿范文
作为一名无私奉献的老师,总不可避免地需要编写说课稿,借助说课稿可以有效提高教学效率。那么大家知道正规的说课稿是怎么写的吗?以下是小编为大家整理的指数函数及性质说课稿范文,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、说教材:
1.在教材中的地位和作用
本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。
二、说学情:
2.学情分析
心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。
此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
三、说教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。
过程与方法:让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。
情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。
四、说教学方法:
教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的`潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
(1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;
(2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。
(3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。
五、说教学过程:
1、导入新课(2分钟)
创设情境,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?
财主应付给打工者的工钱为1073741824分≈1073万元。
(为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)
2、探索新知(7分钟)
问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?
问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?
归纳:函数中,指数x为自变量,底2为常数.
概念:一般地,形如的函数叫做指数函数,其中底()为常量.指数函数的定义域为,值域为
(设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。)
3、分组讨论(8分钟)
4、例题讲解(12分钟)
5、强化练习(8分钟)
6、课堂总结(2分钟)
7、布置作业(1分钟)
一、教学背景
1、教材分析
《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。
2、学情分析
刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。
基于以上分析,我制定如下教学目标及重、难点:
3、教学目标
知识与技能:
初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。
过程与方法:
经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。
情感态度与价值观:
培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。
4、教学重、难点
重点:理解对数函数的概念,掌握对数函数的图象及性质。
难点:由图象探究函数性质,应用性质解决具体问题。
二、教学方法及手段
1、教法
根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。
2、学法
(1)类比学习:通过指数函数类比学习对数函数。
(2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。
3、教学手段
采用多媒体辅助教学。
三、教学教程
1、情境引入
通过银行的复利计算问题,逐步引出对数函数。
设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。
2、新知探索
通过上述模型,让学生给对数函数下定义。
学生用描点法画和的`图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。
以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。
例比较下列各组数中两个值的大小:
(1)log23.4和log28.5;
(2) log0.33.4和log0.38.5;
(3) loga3.4和loga8.5(a>0,且a≠1);
(4) log23.4和log3.42;
(5) log3.42和log0.38.5。
3、巩固练习
(1)比较大小:
lg6________lg8;ln1.3________
(2)比较正数m,n的大小:
若,则m_____n;若,则m_____n.
4、总结提炼
(1)自主探究新知识的方法;
(2)本节课应用了哪些数学思想。
5、布置作业
(1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;
(2)教材P74—7、8
四、板书设计
2.2.2对数函数及其性质
一、概念例题
二、图象
三、性质
四、教学反思
一、教学背景
1、教材分析
《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。
2、学情分析
刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。
基于以上分析,我制定如下教学目标及重、难点:
3、教学目标
知识与技能:
初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。
过程与方法:
经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。
情感态度与价值观:
培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。
4、教学重、难点
重点:理解对数函数的概念,掌握对数函数的'图象及性质。
难点:由图象探究函数性质,应用性质解决具体问题。
二、教学方法及手段
1、教法
根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。
2、学法
(1)类比学习:通过指数函数类比学习对数函数。
(2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。
3、教学手段
采用多媒体辅助教学。
三、教学教程
1、情境引入
通过银行的复利计算问题,逐步引出对数函数。
设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。
2、新知探索
通过上述模型,让学生给对数函数下定义。
学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。
以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。
例比较下列各组数中两个值的大小:
(1)log23.4和log28.5;
(2) log0.33.4和log0.38.5;
(3) loga3.4和loga8.5(a>0,且a≠1);
(4) log23.4和log3.42;
(5) log3.42和log0.38.5。
3、巩固练习
(1)比较大小:
lg6________lg8;ln1.3________
(2)比较正数m,n的大小:
若,则m_____n;若,则m_____n.
4、总结提炼
(1)自主探究新知识的方法;
(2)本节课应用了哪些数学思想。
5、布置作业
(1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;
(2)教材P74—7、8
四、板书设计
2.2.2对数函数及其性质
一、概念例题
二、图象
三、性质
四、教学反思
一次函数的图象与性质说课稿范文
作为一名教学工作者,编写说课稿是必不可少的,说课稿有助于学生理解并掌握系统的知识。怎么样才能写出优秀的说课稿呢?下面是小编整理的一次函数的图象与性质说课稿范文,欢迎大家分享。
一、说教材:
1、教材所处的地位和作用:
《一次函数的图象》是人教版九年义务教育三年制初级中学教科书初中八年级(上册)第三节内容 ,在此之前,学生已学习了如何画一次函数的图象基础上,这为过渡到本节的学习起着铺垫作用。本节内容可以强化学生对前面所学知识的理解,使学生对研究函数的图象和性质的基本方法有一个初步的认识与了解,为今后讨论二次函数和反比例函数的有关问题奠定基础。一次函数的图象加强了代数与几何的联系。
2、教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
1)了解正比例函数y=kx的图象的特点。
2)会作正比例函数的图象。
3)理解一次函数及其图象的有关性质。
4)能熟练地作出一次函数的`图象。
(2)能力目标:
通过教学初步培养学生分析问题,解决实际问题,读图分析、收集处理信息、团结协作、语言表达的能力,以及通过师生双边活动,初步培养学生运用知识的能力,从函数解析式到图像,从图像到解析式的探索,向学生渗透数形结合的思想方法和数学能力,同时也培养学生从特殊到一般,再从一般到特殊的辨证认识能力。
(3)情感目标:
通过对一次函数图象的教学,引导学生从实际出发,在课堂教学过程中,营造轻松愉快的气氛,充分调动学生的学习积极性参与到课堂中,体验探索、发现的乐趣,从而增强学生的参与意识,团结合作的精神和学习数学的兴趣。使学生了解数学知识的功能与价值,形成主动学习的态度。
3、说教学重点、难点:
(1)从知识的联系来说,一次函数的性质是有关一次函数这一部分内容的重点,也是本章的重点内容之一,因此把一次函数的性质的探索作为本课时的教学重点。
(2)由图像归纳性质是学生首次接触,没有明确的思路,而且学生思维的全面性和深刻性也不够,对有图像归纳性质还存在相当大的困难,因此由图像探索性质是本课时的教学难点。
二、说教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:应着重采用数形结合的教学方法。即:数形结合----列举归纳法、由特殊到一般的方法、类比法。根据本课时的教学内容特点以及本班学生的实际,我采用启发式、讨论式等教学方法。在引入新课时,通过复习一次函数的图象的知识,引导启发学生观察一次函数的图象特征,分析图象的特征与一次函数的自变量、因变量的联系,归纳出一次函数的性质,使学生由感性认识上升到理性认识。在归纳一次函数的性质时,采用讨论式教学法,充分调动学生的积极性参与到对一次函数的性质的讨论中,再根据学生的讨论归纳情况进行适当的补充。整个教学过程采用愉快教学法,营造一个轻松愉快的课堂气氛,充分调动学生的情感因素,努力实现“师生互动”、“生生互动”以求达到较好的教学效果。
三、说学法
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
初步培养学生用事物相互联系和发展变化的观点来分析问题,从而认识事物之间是相互联系和有规律地变化着的。培养学生的画图能力,主要是培养学生的看图、识图能力,培养思维能力。要让学生由“学会” 到“会学”。通过本节课的教学,指导学生掌握一些基本的学习方法,运用数形结合的研究方法探索函数知识;通过相互交流讨论,团结合作等方式,培养学生的自学能力和合作能力,增强学生的参与意识,使学生会运用观察、分析、比较、归纳、总结等方法探索数学知识。
四、说学情
本班学生整体素质不高,课堂参与、自主探究意识不强。初二学生正处在感性认识到理性认识的.转型期,对一次函数的性质的理解存在很大的困难。
五、说教学程序
1、复习回顾
启发学生回忆:“一次函数Y=kx+b(k≠0)的图象是一条直线”,同时强调一次函数的图象的位置是由常数k、b决定,从而很自然地引入新课。
2、新知探索
先给出一组一次函数解析式,引导学生动手画出它们的图象,然后带出问题并引导学生观察图象,结合图象进行交流讨论,最后归纳总结一次函数的性质。
(1)在同一直角坐标系中画出下列函数的图象
(1) Y=2x+1, (2) y=-2x-1, (3) y=3x+2 (4) y=-3x+2
(2)引导学生带着问题观察图象、探索一次函数的性质
问题1:从左到右,随着x增大,函数y=2x+1和y=3x+2的图象上的点的位置有什么变化?函数值y又有什么变化呢?
问题2:同样,随着x的增大,函数y=-2x-1和y=-3x-2的图象上的点有什么变化呢?函数值呢?
问题3:为什么会有这样的差别呢?
3、归纳总结
(1)当k>0时,y随着x的增大而增大,这时函数的图象从左到右上升;
(2)当k<0时,y随着的x增大而减小,这时函数的图象从左到右下降。
3、课堂练习
课本P45的“做一做”及练习的第1、2题,这些练习是为了加深学生对一次函数的性质的理解,紧紧抓住了本课时的重点。
4、小结
引导学生回顾本课时所学知识,进一步加深对一次函数的性质的理解。
六、 说反思
在整个备课过程中,我力求做到既要备好教材又要备好学生,努力做到既紧进围绕本课时的教学重点又要结合本班学生实际。但作为以为年轻教师还缺乏教育教学经验,还有很多地方向同行学习,特别是教学语言、教学方法、课堂组织等方面更要学习。
尊敬的各位评委、各位老师:
大家好!
今天我说课的题目是《二次函数的图像》,这是北师大版必修1第二章的第四节课。下面我将围绕本节课“教什么?”、“怎样教?”、“为什么这样教?”三个问题,从教材内容、教法学法、教学过程这三个方面逐一分析说明。
一、教材内容分析:
1、本节课内容在整个教材中的地位和作用。
概括地讲,二次函数的图像在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图像由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
2、教学目标定位。
根据教学大纲要求、新课程标准精神和高一学生心理认知特征,我确定了三个层面的教学目标。第一个层面是基础知识与能力目标:理解二次函数的图像中a、b、c、k、h的作用,能熟练地对二次函数的一般式进行配方,会对图像进行平移变换,领会研究二次函数图像的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的.良好学习习惯;第三个层面是情感、态度和价值观:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
3、教学重难点。
重点是二次函数各系数对图像和形状的影响,利用二次函数图像平移的特例分析过程,培养学生数形结合的思想和划归思想。难点是图像的平移变换,关键是二次函数顶点式中h、k的正负取值对函数图像平移变换的影响。
二、教法学法分析:
数学是发展学生思维、培养学生良好意志品质和美好情感的重要学科,在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。为了更好地体现在课堂教学中“教师为主导,学生为主体”的教学关系和“以人为本,以学定教”的教学理念,在本节课的教学过程中,我将紧紧围绕教师组织——启发引导,学生探究——交流发现,组织开展教学活动。为此,我设计了5个环节:①创设情景——引入新课;②交流探究——发现规律;③启发引导——形成结论;④训练小结——深化巩固;⑤思维拓展——提高能力。这五个环节环环相扣、层层深入,注重关注整个过程和全体学生,充分调动了学生的参与性。
三、教学过程分析:
1、创设情景——引入新课。
教学应充分考虑学生的情感和需要,想方设法让学生在学习中树立信心,感受学习乐趣。根据教材内容,我首先出示20xx年高考题第20题,以需要画y=2x图像为引子,让学生画y=x和y=2x图像,进而比较这两个图像的相同点和不同点为背景切入,一方面让学生总结复习已有知识,为后面的学习做好铺垫,另一方面,使学生在自己熟悉的问题中首先获得解题成功的快乐体验,最后引导学生总结出函数y=x与y=ax图像的关系,得出本节课的第一个知识点,即二次项系数a决定图像的开口方向和开口大小。
由浅入深,下面让学生画y=2x,y=2(x+1)与y=2(x+1)+3的图像并寻找它们的联系,再让学生与多媒体课件展示出的图像进行对比,最后总结出图像的变换规律:a决定开口方向、h决定左右平移、k决定上下平移。由于二次函数的重要性,本节课我以考题为背景引入新课,可以提高学生的学习兴趣,吸引学生的课堂注意力,可以让学生实实在在感受到高考题就在我们的课本中,就在我们平常的练习中。
2、探究交流——发现规律。
从特别到一般是我们发现问题、寻求规律、揭示本质最常用的方法之一。让学生做出y=2x与y=2x+4x-1的图像,再与课件上的图像对比并叙述二者之间的位置关系,得出结论:若二次函数的解析式为y=ax+bx+c,先将其化成y=a(x+h)+k的形式,从而判断出y=ax+bx+c的图像是如何由y=ax变换得到的。在课本第42页例1(1)中要提醒学生注意,在含有参数的解析式y=a(x+h)+k中,顶点坐标应是(-h,k),而不是(h,k)。所以,例1(1)中二次函数f(x)顶点的横坐标是4,即-h=4,h=-4,括号里面就是x-4(这里容易出错)。例1(2)中h、k的值是已知的,只需要确定a的值就可以了。
3、启发引导——形成结论。前面的练习和例题,基本涵盖了二次函数图像平移变换的各种情况,启发并引导了学生将实例的结论进行总结,得出y=x到y=ax,y=ax到y=a(x+h)+k,y=ax到y=ax+bx+c(其中,a均不为0)的图像变化过程,即a>0开口向上,a<0开口向下;h正左移,h负右移;k正上移,k负下移。
4、练习小结——巩固深化。为了巩固和加深二次函数y=ax+bx+c中的a.b.c对图像的影响,接下来组织学生进行课题练习,完成课本44页练习1—3题。上课时间有限,为保证在完成教学任务的前提下,让学生充分练习和讨论,我一直坚持让学生规范使用演草本。课堂上需要学生动手演练的地方不急于安排学生马上讨论,而是让学生思考后将自己的答案整齐地写在演草本上,然后小组内四人相互交换进行量分,因为是在课堂上,量分标准要简单,我要求用30分的整分制。用时较短10分,书写整齐规范10分,解答正确10分。这个过程中会产生学生之间的三次竞争: ①看谁解的快、用时最短;②看谁书写的整齐;③看谁做的对。这个自己做和批阅的过程,也是学生对题目加深理解的过程。量完分后组织学生对不同解法进行探究,这又会产生学生之间的第四次竞争,看谁的方法简便,思维更严密。当然做题时有的学生会做的很快,可以让他们判断黑板上演示学生的解题得分情况,这也促进在黑板上演示的学生同下面学生之间的竞争。这个充满竞争的过程其实也是教师通过演草本无形引导学生解决问题、收获新知的过程,也是一个培养学生探究精神和思考、比较、辨别能力的过程,使学生成为学习上的主人。这样每节课都有竞争,能使学生发现自己在学习的长处,增强了自己的自信心,切实感受到了学习的乐趣,课堂才能真正的活起来。考试中,成绩必然会逐步提高,能避免现在我们教学中学生“考试什么都不会,考完后什么都会”以及阅卷中发现的学生书写凌乱的通病,经过长期这样的练习,每个学生练就了快思考、求准确、写整齐的能力。
5、延伸拓广——提高能力。课堂教学既要面对全体学生,又应关注学生的个体差异,体现分类推进,分层教学原则。为此,我设计了一个提高练习题组,共两道被选题目,以供学有余力的学生能够更好的展示自己的解题能力,取得进一步提高。
以上是我对本节课的一些粗浅的熟悉和构想,如有不妥之处,恳请各位专家、各位同仁批评指正。
谢谢大家!
尊敬的评委老师,大家好,我是今天的5号考生,今天我说课的题目是《指数函数》。
教材分析
教材是课程标准的具体化,是课堂知识呈现的载体,对于教材的深入理解是上好一堂课前提。本课选自人教版,高中数学必修一第二章第六节。在漫长的高中数学学习的过程中,函数的学习贯穿始终。从教材的书写逻辑上看,之前的教材内容已经对于函数的一般性质进行了排布。而本节课指数函数的学习则对接下来对数函数等复杂函数的深入学习奠定了坚实的基础。可以说,指数函数的学习对于高中函数的学习起到了承上启下的重要作用。
学情分析
新的学生观告诉我们,我们要在课堂中充分发挥学生的主体地位,因此对于学生的情况了解也是十分重要的。从思维层面上看,高中的学生已经具备了比较成熟的抽象逻辑思维能力,有着较强的`理解力,这对于我们课堂的开展是十分有帮助的。而这个阶段的学生好胜心比较强,容易产生负面情绪,这对于我们课堂的教学也带来了一定的挑战。从经验上看,在之前的学习中,学生已经对于“指数”“函数”等概念有了深刻的认识,为本节课程的开展提供了帮助,而指数函数相对比较抽象,对于学生的学习、老师的教授都提出了较高的要求,因此合理的教法学法选择显得尤为重要。
教学目标
教学目标是教育教学活动的出发点和依据,结合新课改的思想和新课标的要求,本节课我所制定的三维教学目标如下:
知识与技能目标:掌握指数函数的概念,图像性质;能够利用指数函数的概念解决实际问题。
过程与方法目标:通过分组讨论参与发现的过程,培养学生观察,联想,类比,猜测,归纳的能力。
情感态度与价值观目标:通过教学互动,促进师生情感,激发学生的学习兴趣,提高学生的抽象概括,分析,综合的能力,培养学生联系观点看问题,领会数学科学的应用价值。
而本节课,我将重难点确立为:指数函数的图像和性质,以及它与底数a的关系。
教学教法
正如苏霍姆林斯基所说:只有能够激发学生去进行自我教育的教育,才是真正的教育。在满足学习者需求的基础之上,我将制定适合本阶段学生的教法来展开教学,以体现教师的主导性。分别以图片展示、讨论、讲授、参与练习等相结合的方式进行教学。同时我将采用诱思探究和自主学习相结合的方式,以激发学生的学习主动性,充分地体现学生的主体地位。
教学过程
以上所有的准备都是为了更好的呈现我的课堂,下面来谈一谈我对于教学过程的设计。
首先创设情境,导入新课我将用电脑展示两个实例:计算机价格下降问题和生物中细胞分裂的例子。我会请同学们仔细观察并分组讨论,分别写出计算机价格y与经过月份x的关系以及细胞个数y与分裂次数x的关系,用所学知识结合探究法,分析出指数函数底数讨论的必要性以及分类方法。通过这样的实例,可以很好地激发学生的学习兴趣,培养学生思维的主动性,为接下来的学习做好准备。
其次启发诱导,探求新知我会给出两个简单的指数函数,并要求学生画出它们的图像,并在准备好的小黑板上规范地画出这两个指数函数的图像,同时板书出指数函数的性质。同学们通过动手,促进学生对本课内容的理解学习,并借助小黑板演示其规范性。利用多媒体将指数函数的图像加以展示,利于观察图像总结所学知识的性质,也能对于接下来的知识点导入起到自然结合的作用。当然学生通过我的引导交流讨论会很快画出两个简单的指数函数,归纳出函数的性质涉及方面,总结出它的性质。
接着巩固新知,反馈回授我会板书出例一及例二第一问,并介绍相关考古知识,本着实践为主的原则,完成学生学习:实践到认识再到实践的过程。通过练习实现教师的再指导和学生的渐进式提高。这个环节介绍的化学知识在考古中的应用,这样的设计既开拓了学生的视野,又为下一步学习:计算分期付款的利率等问题埋下伏笔,因此学生能够了解解题的规范步骤,并完成例题,拓展视野体会数学的应用价值。紧接着我会带领学生进行归纳,总结升华我会将同学们进行分组讨论、探究,引导学生对指数函数的知识进行梳理和深化认知。知识与技能目标设置分组pk机制,引导学生对课堂知识进行分类讨论、数形结合等数学方法的归纳。最后我会布置课后作业以帮助学生巩固练习,温故而知新。
板书设计
当然一堂完整的课程离不开简洁明了的板书设计,我的板书设计如下:在黑板中间的正上方,我会写下今天的课题:指数函数,我会在黑板的中间摆上小黑板以展示其规范性。在黑板的左面,我会在练习过程中写下今天练习的,计算步骤。黑板的右面,我会写下例题一以及例题二的第一问。这样的设计,可以帮助学生更好地学习本课的内容。以上就是我所有的授课内容,感谢各位老师的聆听。
一、说教材
1.《指数函数》在教材中的地位、作用和特点
今天说课的内容为“指数函数”第一课时。它是在学习指数概念和幂函数的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数尤其是利用互为反函数的图象间的关系来研究对数函数的性质打下坚实的概念和图象基础。所以指数函数起到了承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算、股市的涨跌、服饰的打折和化学中对放射性物质的变化研究等方面,因此学习这部分知识还有着广泛的现实意义与在专业知识中的应用作用。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2.教学目标、重点和难点
通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识维度:初中已经学习了正比例函数、反比例函数和 一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
能力维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
(1)教学目标
知识目标:①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系;②掌握指数函数的概念;③掌握指数函数的图象和性质。
能力目标:①渗透数形结合的基本数学思想方法;②培养学生观察、联想、类比、猜测、归纳的能力;
情感目标:①在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题;②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力
(2)教学重点和难点
教学重点:指数函数的图象和性质。
教学难点:指数函数的图象性质与底数a的关系。
(3)教学关键:
从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法与学法指导
1.学法指导
由于职高学生大部分数学基础较差,理解能力、运算能力、思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试:
(1)激发学生的求知欲和学习积极性。从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。
(2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。
(3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
(4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
2.教法选择
(1)本节课采用的方法有;启发发现法、课堂讨论法、多媒体教学法。
(2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图)
三、教学设计
在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1.创设情景、导入新课
教师活动:①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1 个分裂成2 个,2个分裂成4个,......,一个这样的细胞分裂 x 次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。③引导学生把对应关系概括到形式。
学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式;
设计意图:①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2.启发诱导、探求新知
(1)指数函数概念的引出
教师活动:①引导学生观察这两个函数,寻找他们的特征;②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现;③引导学生观察指数函数与幂函数在概念上的区别。
学生活动:①学生独立思考并回忆指数的概念;②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念;③理清指数函数与幂函数在概念上的区别。
设计意图:①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。
(2)研究指数函数的图象
教师活动:①给出两个简单的指数函数 和 ,并要求学生画它们的图象;②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象;③利用函数作图器和几何画板作图。
学生活动:①思考画函数图象的方法有哪些?②画出这两个简单的指数函数图象;③让学生利用计算器或计算机来画。
设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。
四、板书设计
考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书,说明;这册新教材更突出了学生的生活数学,从引入到应用,都围绕着生活数学,对学生的学习积极性的培养起到了很好的作用。这节知识还提到了函数作图器,相信它比几何画板更容易学,学生对它更感兴趣。
一、说教材
1.《指数函数》在教材中的地位、作用和特点
今天说课的内容为“指数函数”第一课时。它是在学习指数概念和幂函数的基础上学习指数函数的概念和性质,通过学习指数函数的定义,图像及性质,可以进一步深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,并且为学习对数函数尤其是利用互为反函数的.图象间的关系来研究对数函数的性质打下坚实的概念和图象基础。所以指数函数起到了承上启下的作用。
此外,《指数函数》的知识与我们的日常生产、生活和科学研究有着紧密的联系,尤其体现在细胞分裂、贷款利率的计算、股市的涨跌、服饰的打折和化学中对放射性物质的变化研究等方面,因此学习这部分知识还有着广泛的现实意义与在专业知识中的应用作用。本节内容的特点之一是概念性强,特点之二是凸显了数学图形在研究函数性质时的重要作用。
2.教学目标、重点和难点
通过初中学段的学习和职业高中对集合、函数等知识的系统学习,学生对函数和图象的关系已经构建了一定的认知结构,主要体现在三个方面:
知识维度:初中已经学习了正比例函数、反比例函数和一次函数,上册第三章又进一步学习了函数的概念及其通性,并对一次函数、二次函数作了更深入研究,学生已经初步掌握了研究函数的一般方法,能够从初中运动变化的角度认识函数初步转化到从集合与对应的观点来认识函数。
能力维度:学生对采用“描点法”描绘函数图象的方法已基本掌握,能够为研究指数函数的性质做好准备。
素质维度:由观察到抽象的数学活动过程已有一定的体会,已初步了解了数形结合的思想。
(1)教学目标
知识目标:①了解指数函数模型的实际背景,认识数学与现实生活、其他学科的联系②掌握指数函数的概念③掌握指数函数的图象和性质
能力目标:①渗透数形结合的基本数学思想方法②培养学生观察、联想、类比、猜测、归纳的能力;
情感目标:①在学习的过程中体会研究具体函数及其性质的过程和方法,如体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题②通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力
(2)教学重点和难点
教学重点:指数函数的图象和性质。
教学难点:指数函数的图象性质与底数a的关系。
(3)教学关键:
从实际出发,使学生在获得一定的感性认识和基础上,通过观察、比较、归纳提高到理性认识,以形成完整的概念;在理解概念的基础上充分结合图象,利用数形结合来扫清障碍。
二、教法与学法指导
1.学法指导
由于职高学生大部分数学基础较差,理解能力、运算能力、思维能力等方面参差不齐,同时学生学好数学的自信心不强,学习积极性不高,厌学情绪严重。针对实际情况,考虑到学生非智力因素的影响,我主要在以下几个方面做了尝试:
(1)激发学生的求知欲和学习积极性。从学生感兴趣的生活实例着手,激发学生的学习兴趣,指导学生积极思维,主动获取知识。
(2)领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个职业高中的数学学习。
(3)在互相交流和自主探究中获得发展。在生活实例的课堂导入、指数函数的性质研究、例题与训练、课内小节等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。
(4)注意学生的个体差异。利用小组合作来帮助后进的学生,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。
2.教法选择
(1)本节课采用的方法有;启发发现法、课堂讨论法、多媒体教学法。
(2)采用这些方法的理论依据:为了调动学生的学习积极性,使学生变被动为主动愉快的学习。教学中我引导学生从实例出发启发出指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在指数函数图像的画法上,借助电脑,演示作图过程以及图像变化的动画过程,新技术、新工具、新模式给了学生以新的感受,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。(有条件的可以安排在机房上课,让学生也利用函数作图器作图)
三、教学设计
在设计本节课的教学过程中,本着遵循学生的认知规律、让学生去经历知识的形成与发展过程的原则,我设计了如下的教学程序,启发学生逐步发现和认识指数函数的图象和性质。
1.创设情景、导入新课
教师活动:①用电脑展示两个实例,第一个是生物中细胞分裂问题(某种细胞分裂时由1个分裂成2个,2个分裂成4个,......,一个这样的细胞分裂x次后,得到的细胞个数y与x有怎样的函数关系?),第二个是放射性物质变化的例子(一种放射性物质不断变化为其他物质,每经过一年剩留的质量约是原来的84%,求经过多少年,剩留量是原来的一半,结果保留一位有效数字)。②组织学生思考、分小组讨论所提出的问题,注意引导学生从定义出发来解释两个问题中变量之间的关系。③引导学生把对应关系概括到形式。
学生活动:分别写出细胞个数y与分裂次数x的关系式和剩留量y与经过的年数x的关系式;
设计意图:①通过生活实例充分调动学生的学习兴趣,激发学生的探究心理,顺利引入课题,也为引出指数函数的概念做准备,扫清由概念不清而造成的知识障碍,培养学生思维的主动性,为突破难点做好准备;②由具体数字抽象概括出指数函数y=ax的模型,为研究指数函数做准备;③两个例子又恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。
2.启发诱导、探求新知
(1)指数函数概念的引出
教师活动:①引导学生观察这两个函数,寻找他们的特征②请学生思考对于底数a是否需要限制,如不限制会有什么问题出现③引导学生观察指数函数与幂函数在概念上的区别。
学生活动:①学生独立思考并回忆指数的概念;②解释这两个问题中变量间的关系为什么构成函数,从而归纳指数函数的概念;③理清指数函数与幂函数在概念上的区别。
设计意图:①引导学生结合指数的有关概念来归纳出指数函数的定义,并向学生指出指数函数的形式特点;②注意提示底数的取值范围,这样避免了学生对于底数a范围分类的不清楚,也为研究指数函数的图象做了“分类讨论”的铺垫。③将指数函数与幂函数在定义上进行区别,加深了对指数函数概念的掌握。
(2)研究指数函数的图象
教师活动:①给出两个简单的指数函数和,并要求学生画它们的图象②在准备好的小黑板上利用列表描点法规范地画出这两个指数函数的图象③利用函数作图器和几何画板作图。
学生活动:①思考画函数图象的方法有哪些?②画出这两个简单的指数函数图象③让学生利用计算器或计算机来画。
设计意图:让学生动手作简单的指数函数的图象对深刻理解本节课的内容有着一定的促进作用,在学生完成基本作图之后,教师再利用课前已列表、建立坐标系的小黑板展示准确的作图方法,达到进一步规范学生的作图习惯的目的,然后借助“函数作图器”或“几何画板”准确作图,既可以培养学生的学习兴趣也可以使图象更精确。
四、板书设计
考虑到板书在教学过程中发挥的功能,本节课我设计了由四个板块构成的板书,
说明;这册新教材更突出了学生的生活数学,从引入到应用,都围绕着生活数学,对学生的学习积极性的培养起到了很好的作用。这节知识还提到了函数作图器,相信它比几何画板更容易学,学生对它更感兴趣。
一、说教材:
1.在教材中的地位和作用
本节内容是高等教育出版社出版的中等职业教育课程改革国家规划新教材《数学(基础模块)》上册第四章第二节第一课时,属于数与代数领域的知识。在之前,学生已学习了函数的概念与性质掌握了研究函数的一般思路,并将幂指数从整数推广到了实数范围的知识,这为过度到本节的学习起着铺垫作用,本节内容是函数内容的深化,又是后续学习对数函数及等比数列的性质的基础,有非常高的实用价值例如在细胞分裂、贷款利息、考古中年份的测算都有较大的应用。也是教材中起承上启下作用的核心知识之一。因此,在指数函数是函数的重要内容之中,在高中阶段有不可替代的作用。
二、说学情:
2.学情分析
心理特点:中职生的共性是一般学习数学的兴趣不高,学习比较被动,自主学习能力比较差,因此在课堂的一开始就要激发学生学习数学的动机,学习动机是直接推动学生学好数学达到学习目的的内在动力,直接影响学习效果。变“要我学”为“我要学”。
此外职高生生理上表现为少年好动,注意力易分散抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。
知识障碍上:知识掌握上,学生刚刚学习了函数的定义、图象、性质,已经掌握了研究函数的一般思路,对于本节课的学习会有很大帮助。许多学生出现知识遗忘,所以应全面系统的去回顾与讲述;学生学习本节课的知识障碍,底数对函数图象的影响学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
三、说教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图像及其性质,并用指数函数的性质解决一些问题。
过程与方法:让学生经历“特殊→一般→特殊”的认识过程,完善认知结构,领会数形结合、分类讨论、归纳推理等数学思想方法;通过运用多媒体的教学手段,引领学生主动探索指数函数性质,体会学习数学规律的方法,体验成功的乐趣。
情感态度价值观:让学生感受数学问题探索的乐趣和成功的喜悦,体会数学的理性、严谨及数与形的和谐统一美;使学生获得研究函数的规律和方法,提高学生的学习能力养成积极主动,勇于探索,不断创新的学习习惯和品质。
四、说教学方法:
教法的选择与教学手段:基于本节课的特点,应着重采用多种的教学方法和手段,其理论依据是坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
(1)故事激趣法:通过小故事牵动学生的思维,在他们不会解决又急于的心理之间制造一种悬念,激起学生强烈的求知欲望;
(2)多种教学方法结合:教学形式上开展分组比赛、课堂抢答等多种形式的活动,使学生在学习中有光荣感、成就感,使他们获得学习的乐趣。
(3)任务驱动法:根据学生的心理发展规律,采用学生参与程度高讨论教学法。在老师启发引导下,运用问题解决式教法,师生交谈法,图像法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。
五、说教学过程:
1、导入新课(2分钟)
创设情境,兴趣导入:从前有个财主,为人刻薄吝啬,常常克扣工人的工钱,因此附近村民都不愿意到他那里打工。有一天,这个财主家来了一位年轻人,要求打工一个月,报酬是:第一天的工钱只要一分钱,第二天是二分钱,第三天是四分钱……以后每天的工钱是前一天的2倍,直到30天期满。这个财主听了,心想这工钱也真便宜,就马上与这个年轻人签订了合同。可是一个月后,这个财主却破产了,因为他付不了那么多的工钱。那么这工钱到底有多少呢?
财主应付给打工者的工钱为1073741824分≈1073万元
(为了激发学生探究的好奇心和学习的兴趣,引起注意,让学生在不会解决又急于的心理状态下学习)
2、探索新知(7分钟)
问题1:某种物质的细胞分裂,由1个分裂成2个,2个分裂成4个,4个分裂成8个,……,1个这样的细胞分裂x次后,得到的细胞个数y与x的关系式是什么?
问题2:《庄子天下篇》中写道:“一尺之棰,日取其半,万世不竭。”请你写出截取x次后,木棰剩余量y关于x的关系式?
归纳:函数中,指数x为自变量,底2为常数.
概念:一般地,形如的函数叫做指数函数,其中底()为常量.指数函数的定义域为,值域为
(设计意图:两个例子恰好为研究指数函数中底数大于1和底数大于0小于1的图象做好了准备。)
3、分组讨论(8分钟)
4、例题讲解(12分钟)
5、强化练习(8分钟)
6、课堂总结(2分钟)
7、布置作业(1分钟)
Copyright © 2022 51Feibao.com All rights reserved. ICP备案号:粤ICP备2021151925号