对数函数说课稿一等奖

更新时间:2023-06-25 09:02:03

对数函数说课稿一等奖

对数函数说课稿一等奖

1、对数函数说课稿

一、说教材

1、地位和作用

本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

2、教学目标的确定及依据

依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1) 理解对数函数的概念、掌握对数函数的图象和性质。

(2) 培养学生自主学习、综合归纳、数形结合的能力。

(3) 培养学生用类比方法探索研究数学问题的素养;

(4) 培养学生对待知识的科学态度、勇于探索和创新的精神。

(5) 在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

难点:底数a对对数函数的图象和性质的影响;

关键:对数函数与指数函数的类比教学

由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用"从特殊到一般"、"从具体到抽象"的方法。

(3)体现"对比联系"、"数形结合"及"分类讨论"的思想方法。

(4)投影仪演示法。

在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索,得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四。说教程

在认真分析教材、教法、学法的基础上,设计教学过程如下:

(一) 创设问题情景、提出问题

在某细胞分裂过程中,细胞个数y是分裂次数x的函数 对数函数说课稿 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

问题一:这是一个怎样的函数模型类型呢?

设计意图:复习指数函数

问题二:现在我们来研究相反的问题,如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?

设计意图:为了引出对数函数

问题三:在关系式 对数函数说课稿 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念。

(二) 意义建构:

1. 对数函数的概念:

同样,在前面提到的放射性物质,经过的'时间x年与物质剩余量y的关系式为 对数函数说课稿 ,我们也可以把它改为对数式, 对数函数说课稿 ,其中x年也可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。

设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。

但在习惯上,我们用x表示自变量,用y表示函数值

问题一:你能把以上两个函数表示出来吗?

问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想)

问题三:在 对数函数说课稿 中,a有什么限制条件吗?请结合指数式给以解释。

问题四:你能根据指数函数的定义给出对数函数的定义吗?

问题五:对数函数说课稿与对数函数说课稿中的x,y的相同之处是什么?不同之处是什么?

问题六:对数函数说课稿与 对数函数说课稿中的x,y的相同之处是什么?不同之处是什么?

设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域

2. 对数函数的图象与性质

问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

(提示学生进行类比学习)

合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系。

(1) 对数函数说课稿

(2) 对数函数说课稿

合作探究2:当 对数函数说课稿 函数 对数函数说课稿 与 对数函数说课稿 的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)

合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。

(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

问题1:对数函数 对数函数说课稿 ( 对数函数说课稿 )是否具有奇偶性,为什么?

问题2:对数函数 对数函数说课稿 ( 对数函数说课稿 ),当 对数函数说课稿 时,x取何值,y 对数函数说课稿 0,x取何值,y 对数函数说课稿 ,当 对数函数说课稿 呢?

问题3:对数式 对数函数说课稿 的值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。

知识拓展:函数 对数函数说课稿 称为 对数函数说课稿 的反函数,反之,函数 对数函数说课稿 也称为 对数函数说课稿 的反函数。一般地,如果函数 对数函数说课稿 存在反函数,那么它的反函数记作为 对数函数说课稿

(三) 数学应用

1. 例题

例1:求下列函数的定义域

(1) 对数函数说课稿

(2) 对数函数说课稿 ( 对数函数说课稿 )

(该题主要考查对数函数 对数函数说课稿 的定义域 对数函数说课稿 这一限制条件根据函数的解析式求得不等式,解对应的不等式。同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1) 对数函数说课稿 , 对数函数说课稿

(2) 对数函数说课稿 , 对数函数说课稿

(3) 对数函数说课稿 , 对数函数说课稿

(4) 对数函数说课稿 , 对数函数说课稿 ,

(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)

合作探究4:已知 对数函数说课稿 ,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想。)

本题可以从以下几方面加以引导点拨

1.本题的难点在哪儿?

2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系

本题也可以从形的角度来思考。

(四) 目标检测

P69 1,2,3

(五) 课堂小结

由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)

(六)布置作业 P70 1,2,3

2、对数函数说课稿

各位评委、老师们:大家好!我说课的内容是《对数函数及其性质》,《对数函数及其性质》是高中数学必修1第二章第二节的第2课时的教学内容。下面我从教材分析、教学目标设计、教学重难点、教法学法、教学媒体设计、教学过程设计六个方面对本节课进行说明:

一、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

二、教学目标设计:

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

1、知识目标:理解指数函数的定义,掌握对数函数的图性质及其简单应用。

2、能力目标:通过教学培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。

3、情感目标:通过学习,使学生学会认识事物的特殊与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。

三、教学重点、难点分析

1、理解函数的概念、掌握函数值的求法、函数定义域的求法是本节课的重点

2、学生的基础较好,大多数学生的动手能力较好,因此可以通过描点,让学生动手画图像,观察图像的特征,进一步理解性质,因此我将本课的难点确定为:用数形结合的方法从具体到一般地探索、概括对数函数的性质。

四、说教法、学法

在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

说学法“授人与鱼,不如授人与渔”。教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,进行以下学法指导:

比较法:在初步理解函数概念的同时,要求学生比较两种概念,特别加深理解数学知识之间的相互渗透性。

观察分析:让学生要学会观察问题,分析问题和解决新问题

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。这样可发挥学生的主观能动性,有利于提高学生的各种能力。

五、教学媒体设计:

根据本节课的教学任务,和学生学习的需要,教学媒体设计如下:

教师利用多媒体准备的素材①对数函数的图像②例题和习题③与本节课相关的结论

设计意图:利用电脑,演示作图过程及图像的变化的动态过程,例题和习题,从而使学生直接的接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率,从而增大教学的容量和直观性、准确性。

六、教学过程的设计:

环节一:引入课题,初步感知概念

1.知识回顾

1)学习指数函数时,对其性质研究了哪些内容,采取怎样的方法?

设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法借助图象研究性质.

2)对数的定义

设计意图:为讲解对数函数时对底数的限制做准备.

2.教学情景

由学生前面学习的熟悉的细胞有丝分裂问题入手,引入对数函数的概念设计意图:学生通过实际问题,体会函数

环节二:新知探究,构建概念

(一)对数函数的概念

1.定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+∞).

学生思考问题:①为什么对数函数概念中规定②对数函数对底数的限制:

设计意图:为学习对数函数的定义,图像和性质做铺垫(

(二)对数函数的图象和性质

教师和学生通过列表,描点画出函数1)(2)(3)(4)的图像,并引导学生类比指数函数的图像和性质观察,归纳对数函数图像的特征,得出性质。

探索研究:在同一坐标系中画出下列对数函数的图象;(可用描点法,也可计算器)(1)(2)(3)(4)

环节三、典例分析,深化知识、

例1:

解:(略)

设计意图:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理巩固练习:

环节四、归纳小结,强化思想

本节课主要讲解了对数函数的定义,图像和性质及其求定义域,了解通过图像观性质。

环节五、作业布置(加深对知识的理解)

作业分为必做题和选做题,必做题对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与,注重知识的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生自主发展、合作探究的学习氛围的形成.

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正

3、对数函数说课稿

一、教学背景

1、教材分析

《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

2、学情分析

刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

基于以上分析,我制定如下教学目标及重、难点:

3、教学目标

知识与技能:

初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

过程与方法:

经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

情感态度与价值观:

培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

4、教学重、难点

重点:理解对数函数的概念,掌握对数函数的图象及性质。

难点:由图象探究函数性质,应用性质解决具体问题。

二、教学方法及手段

1、教法

根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

2、学法

(1)类比学习:通过指数函数类比学习对数函数。

(2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

3、教学手段

采用多媒体辅助教学。

三、教学教程

1、情境引入

通过银行的复利计算问题,逐步引出对数函数。

设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

2、新知探索

通过上述模型,让学生给对数函数下定义。

学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

例比较下列各组数中两个值的大小:

(1)log23.4和log28.5;

(2) log0.33.4和log0.38.5;

(3) loga3.4和loga8.5(a>0,且a≠1);

(4) log23.4和log3.42;

(5) log3.42和log0.38.5。

3、巩固练习

(1)比较大小:

lg6________lg8;ln1.3________

(2)比较正数m,n的大小:

若,则m_____n;若,则m_____n.

4、总结提炼

(1)自主探究新知识的方法;

(2)本节课应用了哪些数学思想。

5、布置作业

(1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

(2)教材P747、8

四、板书设计

2.2.2对数函数及其性质

一、概念例题

二、图象

三、性质

四、教学反思

4、对数函数说课稿

说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。

一、说教材

1、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

2、教学目标的确定及依据。

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。

(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;

难点:利用指数函数的图象和性质得到对数函数的图象和性质;

关键:抓住对数函数是指数函数的反函数这一要领。

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用“从特殊到一般”、“从具体到抽象”的方法。

(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

(4)多媒体演示法。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、说教学程序

1、复习导入

(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

2、认定目标(出示教学目标)

3、导学达标

按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动。

(1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。

因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

(2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x=,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax。的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=log x的图象,再出示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。

这样可以充分调动学生自主学习的积极性。

(3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。

作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

4、巩固达标(见课件)

这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。

5、反馈练习(见课件)

习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

6、归纳总结(见课件)

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

7、课外作业:(1)完成P178 A组1、2、3题

(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?

五、说板书

板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

5、对数函数说课稿

说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。

一、说教材

1、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

2、教学目标的确定及依据。

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。

(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;

难点:利用指数函数的图象和性质得到对数函数的图象和性质;

关键:抓住对数函数是指数函数的反函数这一要领。

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用“从特殊到一般”、“从具体到抽象”的方法。

(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

(4)多媒体演示法。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、说教学程序

1、复习导入

(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的'图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

2、认定目标(出示教学目标)

3、导学达标

按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动。

(1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。

因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

(2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x=,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax。的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=log x的图象,再出示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。

这样可以充分调动学生自主学习的积极性。

(3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。

作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

4、巩固达标(见课件)

这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。

5、反馈练习(见课件)

习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

6、归纳总结(见课件)

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

7、课外作业:(1)完成P178 A组1、2、3题

(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?

五、说板书

板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

6、对数函数说课稿

各位评委、老师:

大家好,我说课的内容是人教A版《普通高中课程标准实验教科书A版数学必修一》第二章2.2.2《对数函数及其性质》。

我说课的程序主要有教材分析、学情分析、教法与学法、教学过程、板书设计等五个部分。

一、教材分析

本节内容是在学习了指数函数和对数概念后,通过具体实例了解对数函数模型的实际背景,学习对数函数概念进而研究对数函数的图象和性质。学生已掌握的指数函数的图象和性质为类比学习对数函数提供了前提,同时对数函数作为常用数学模型在人口、考古等生活生产中有广泛的应用,为学生进一步学习、参加生产和实际生活提供必要的基础知识。而本节蕴含的归纳、类比、数形结合的思想为培养学生探究、发现的能力奠定基础。

《数学课程标准》要求通过具体实例初步理解对数函数的概念,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探究并了解对数函数的单调性与特殊点。依据以上标准和学生学习发展方面的要求,我制定了如下教学目标:

知识与技能:理解对数函数的概念、掌握对数函数的图象和性质;培养学生观察、分析、归纳、类比的能力。

过程与方法:类比指数函数的学习,从特殊到一般,通过对不同底数的对数函数图象的分析、归纳出对数函数的性质。

情感态度价值观:培养学生对待知识的科学态度、勇于探索和创新的精神.

结合教学内容和教学目标,考虑到学生对抽象事物的理解可能存在困难,制定如下的教学重点、难点:

重点:对数函数的概念、图象和性质;

难点:对数函数的图象、性质,底数a对对数函数的图象和性质的影响;

二、学情分析

对于高一的学生来说,刚进入一个新的学习阶段,有较强的好奇心,且在之前指数函数的学习中已初步掌握了研究函数的方法,但对抽象事物的理解有所欠缺,对对数概念的理解还不够透彻。

三、教学与学法

教学过程是教师和学生共同参与的过程,要启发学生自主性学习,充分调动学生的积极性、主动性,通过指数函数的图象、性质类比学习对数函数的图象、性质,在教学中引导学生围绕图象思考,数形结合,加强直观教学,同时在例题的讲解中,由易到难,由具体到抽象。为有效地渗透数学思想方法,结合所要完成的教学目标,并为激发学生的学习兴趣,我采用以引导探究为主,启发学生思考、分析、归纳,在提出猜想后通过投影仪演示底数变化对对数函数图象的影响。

老师的教是为学生更好地学,学生是活动的主体,我确定学法为自主探究法,学生在老师的引导下通过观察、分析做出归纳。

四.教学过程

教学过程分为以下环节:

实例引入、直观感知总结类比、形成概念类比探究、分析归纳知识应用、提升能力师生交流、归纳小结作业布置

(一)实例引入、直观感知

1、在某细胞分裂过程中,细胞个数y是分裂次数x的函数 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式.

问题一:这是一个怎样的函数模型类型呢? 设计意图:复习指数函数

问题二:如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题? 设计意图:为了引出对数函数

问题三:在关系式 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

设计意图:既为了更好地理解函数,也是为了让学生更好地理解对数函数的概念.

2、 在2.2.1的例6中,考古学家利用 估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式 中的 ,任取一个正的实数值,均有唯一的值与之对应,所以 的函数。

问题三:你能在以前的学习中找到类似以上两个函数的例子吗?(促进学生思考这种函数的特点)

问题四:你能类比指数函数得到此类函数的一般式吗?

设计意图:体现了类比和特殊到一般的数学思想

(二)总结类比、形成概念

问题五:你能根据指数函数的定义给出对数函数的定义吗?

(师生共同归纳出对数函数的定义)

问题六: 与 中的x,y的相同之处是什么?不同之处是什么?

设计意图:促进学生更好地理解对数函数与指数函数的联系,从而得到对数函数的定义域

(三)类比探究、分析归纳

问题:有了研究指数函数的经历,你会如何研究对数函数的性质?

设计意图:提示学生进行类比学习

合作探究1;在同一直角坐标系中画出下列函数的图象,并观察图象,探求他们之间的关系。

合作探究2:结合指数函数的学习经验,你有什么猜想?在同一坐标系中画出 与 验证。

设计意图:体现“从特殊到一般”、“从具体到抽象”的方法。

教师通过几何画板动态演示对数函数图象随底数变化的规律,进一步促进学生理解对数函数的图象特点。

合作探究3:对照指数函数的性质,总结归纳对数函数的性质.

(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

(四)知识应用、提升能力

例1:求下列函数的定义域

(1) ( ) (2) ( )

(该题主要考查对数函数 的定义域 ,可在此总结函数定义域的限制)

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1) , (2) ,

(3) , (4) , ,

设计意图:学生通过回顾利用指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法

思考巩固:已知 ,比较m,n的大小

设计意图:该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想,但有一定难度

(五)师生交流、归纳小结

由学生小结,相互补充完善,教师再次强调对数函数在生活生产中的应用,既首尾呼应又为后续学习对数函数的应用铺垫。

(六)布置作业

教材P73 练习1,2

设计意图:练习难度不大,是对本节知识的巩固。

7、对数函数说课稿

说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位专家、老师批评指正。

一、说教材

1、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第八节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;“对数函数”这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

2、教学目标的确定及依据。

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1)知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

(2)能力目标:培养学生自主学习、综合归纳、数形结合的能力。

(3)德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

(4)情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;

难点:利用指数函数的图象和性质得到对数函数的图象和性质;

关键:抓住对数函数是指数函数的反函数这一要领。

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用“从特殊到一般”、“从具体到抽象”的方法。

(3)体现“对比联系”、“数形结合”及“分类讨论”的思想方法。

(4)多媒体演示法。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、说教学程序

1、复习导入

(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

(2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

2、认定目标(出示教学目标)

3、导学达标

按"教师为主导,学生为主体,训练为主线”的原则,安排师生互动活动。

(1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1。从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。

因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

(2)对数函数的'图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x=,1,2,4,8,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

方法二(图象变换法)因为对数函数和指数函数互为反函数,图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax。的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=()x的图象画出y=log x的图象,再出示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。

这样可以充分调动学生自主学习的积极性。

(3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。

作了以上分析之后,再分a>1与0<a<1两种情况列出对数函数图象和性质表,体现了从“特殊到一般”、“从具体到抽象”的方法。出示课件并进行详细讲解,把对数函数图象和性质列成一个表以便让学生对比着记忆。

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

4、巩固达标(见课件)

这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现“数形结合”和“分类讨论”的思想。

5、反馈练习(见课件)

习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

6、归纳总结(见课件)

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

7、课外作业:(1)完成P178 A组1、2、3题

(2)当底数a>1与0<a<1时,底数不同,对数函数图象有什么持点?

五、说板书

板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

8、对数函数说课稿

一、说教材

1、地位和作用

本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,是在没学习反函数的基础上研究的指数函数和对数函数的自变量与因变量之间的关系,同时对数函数作为常用数学模型在解决社会生活中的实例有广泛的应用,本节课的学习为学生进一步学习、参加生产和实际生活提供必要的基础知识。

2、教学目标的确定及依据

依据新课标和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1) 理解对数函数的概念、掌握对数函数的图象和性质。

(2) 培养学生自主学习、综合归纳、数形结合的能力。

(3) 培养学生用类比方法探索研究数学问题的素养;

(4) 培养学生对待知识的科学态度、勇于探索和创新的精神。

(5) 在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

难点:底数a对对数函数的图象和性质的影响;

关键:对数函数与指数函数的类比教学

由指数函数的图象过渡到对数函数的图象,通过类比分析达到深刻地了解对数函数的图象及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图象,数形结合,加强直观教学,使学生能形成以图象为根本,以性质为主体的知识网络,同时在例题的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突出重点、突破难点。

二、说教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

(1)启发引导学生思考、分析、实验、探索、归纳。

(2)采用"从特殊到一般"、"从具体到抽象"的方法。

(3)体现"对比联系"、"数形结合"及"分类讨论"的思想方法。

(4)投影仪演示法。

在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳、整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索,得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四。说教程

在认真分析教材、教法、学法的基础上,设计教学过程如下:

(一) 创设问题情景、提出问题

在某细胞分裂过程中,细胞个数y是分裂次数x的函数 对数函数说课稿 ,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

问题一:这是一个怎样的函数模型类型呢?

设计意图:复习指数函数

问题二:现在我们来研究相反的问题,如果知道了细胞个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?

设计意图:为了引出对数函数

问题三:在关系式 对数函数说课稿 每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

设计意图:一是为了更好地理解函数,同时也是为了让学生更好地理解对数函数的概念。

(二) 意义建构:

1. 对数函数的概念:

同样,在前面提到的放射性物质,经过的时间x年与物质剩余量y的关系式为 对数函数说课稿 ,我们也可以把它改为对数式, 对数函数说课稿 ,其中x年也可以看作物质剩余量y的'函数,可见这样的问题在现实生活中还是不少的。

设计意图:前面的问题情景的底数为2,而这个问题情景的底数为0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。

但在习惯上,我们用x表示自变量,用y表示函数值

问题一:你能把以上两个函数表示出来吗?

问题二:你能得到此类函数的一般式吗?(在此体现了由特殊到一般的数学思想)

问题三:在 对数函数说课稿 中,a有什么限制条件吗?请结合指数式给以解释。

问题四:你能根据指数函数的定义给出对数函数的定义吗?

问题五:对数函数说课稿与对数函数说课稿中的x,y的相同之处是什么?不同之处是什么?

问题六:对数函数说课稿与 对数函数说课稿中的x,y的相同之处是什么?不同之处是什么?

设计意图:前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略的或最不理解的是函数的定义域,所以设计这两个问题是为了让学生更好地理解对数函数的定义域

2. 对数函数的图象与性质

问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

(提示学生进行类比学习)

合作探究1;借助于计算器在同一直角坐标系中画出下列两组函数的图象,并观察各组函数的图象,探求他们之间的关系。

(1) 对数函数说课稿

(2) 对数函数说课稿

合作探究2:当 对数函数说课稿 函数 对数函数说课稿 与 对数函数说课稿 的图象之间有什么关系?(在这儿体现"从特殊到一般"、"从具体到抽象"的方法)

合作探究3:分析你所画的两组函数的图象,对照指数函数的性质,总结归纳对数函数的性质。

(学生讨论并交流各自的发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)

问题1:对数函数 对数函数说课稿 ( 对数函数说课稿 )是否具有奇偶性,为什么?

问题2:对数函数 对数函数说课稿 ( 对数函数说课稿 ),当 对数函数说课稿 时,x取何值,y 对数函数说课稿 0,x取何值,y 对数函数说课稿 ,当 对数函数说课稿 呢?

问题3:对数式 对数函数说课稿 的值的符号与a,b的取值之间有何关系?请用一句简洁的话语叙述。

知识拓展:函数 对数函数说课稿 称为 对数函数说课稿 的反函数,反之,函数 对数函数说课稿 也称为 对数函数说课稿 的反函数。一般地,如果函数 对数函数说课稿 存在反函数,那么它的反函数记作为 对数函数说课稿

(三) 数学应用

1. 例题

例1:求下列函数的定义域

(1) 对数函数说课稿

(2) 对数函数说课稿 ( 对数函数说课稿 )

(该题主要考查对数函数 对数函数说课稿 的定义域 对数函数说课稿 这一限制条件根据函数的解析式求得不等式,解对应的不等式。同时通过本题也可让学生总结求函数的定义域应从哪些方面入手)

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1) 对数函数说课稿 , 对数函数说课稿

(2) 对数函数说课稿 , 对数函数说课稿

(3) 对数函数说课稿 , 对数函数说课稿

(4) 对数函数说课稿 , 对数函数说课稿 ,

(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成前3小题,第四题可通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)

合作探究4:已知 对数函数说课稿 ,比较m,n的大小(该题不仅运用了对数函数的图象和性质,还培养了学生数形结合、分类讨论等数学思想。)

本题可以从以下几方面加以引导点拨

1.本题的难点在哪儿?

2.你希望不等式的两边的对数式变成怎样的形式,你能否找到它们之间的联系

本题也可以从形的角度来思考。

(四) 目标检测

P69 1,2,3

(五) 课堂小结

由学生小结(对数函数的概念,对数函数的图象和性质,利用对数函数的性质比较大小的一般方法和步骤,求定义域应从几方面考虑等)

(六)布置作业 P70 1,2,3

9、对数函数说课稿

我今天说课的内容是《对数函数》,现就教材、教法、学法、教学程序、板书五个方面进行说明。恳请在座的各位老师批评指正。

一、说教材

1、教材的地位、作用及编写意图

《对数函数》出现在职业高中数学第一册第四章第四节。函数是高中数学的核心,对数函数是函数的重要分支,对数函数的知识在数学和其他许多学科中有着广泛的应用;学生已经学习了对数、反函数以及指数函数等内容,这为过渡到本节的学习起着铺垫作用;"对数函数"这节教材,指出对数函数和指数函数互为反函数,反映了两个变量的相互关系,蕴含了函数与方程的数学思想与数学方法,是以后数学学习中不可缺少的部分,也是高考的必考内容。

2、教学目标的确定及依据。

依据教学大纲和学生获得知识、培养能力及思想教育等方面的要求:我制定了如下教育教学目标:

(1) 知识目标:理解对数函数的概念、掌握对数函数的图象和性质。

(2) 能力目标:培养学生自主学习、综合归纳、数形结合的能力。

(3) 德育目标:培养学生对待知识的科学态度、勇于探索和创新的精神。

(4) 情感目标:在民主、和谐的教学气氛中,促进师生的情感交流。

3、教学重点、难点及关键

重点:对数函数的概念、图象和性质;

难点:利用指数函数的图象和性质得到对数函数的图象和性质;

关键:抓住对数函数是指数函数的反函数这一要领。

二、说教法

大部分学生数学基础较差,理解能力,运算能力,思维能力等方面参差不齐;同时学生学好数学的自信心不强,学习积极性不高。针对这种情况,在教学中,我引导学生从实例出发启发指数函数的定义,在概念理解上,用步步设问、课堂讨论来加深理解。在对数函数图像的画法上,我借助多媒体,演示作图过程及图像变化的动画过程,从而使学生直接地接受并提高学生的学习兴趣和积极性,很好地突破难点和提高教学效率。

三、说学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)对照比较学习法:学习对数函数,处处与指数函数相对照。

(2)探究式学习法:学生通过分析、探索、得出对数函数的定义。

(3)自主性学习法:通过实验画出函数图象、观察图象自得其性质。

(4)反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

这样可发挥学生的主观能动性,有利于提高学生的各种能力。

四、说教学程序

1、复习导入

(1)复习提问:什么是对数?如何求反函数?指数函数的图象和性质如何?学生回答,并利用课件展示一下指数函数的图象和性质。

设计意图:设计的提问既与本节内容有密切关系,又有利于引入新课,为学生理解新知识清除了障碍,有意识地培养学生分析问题的能力。

2)导言:指数函数有没有反函数?如果有,如何求指数函数的反函数?它的反函数是什么?

设计意图:这样的导言可激发学生求知欲,使学生渴望知道问题的答案。

2、认定目标(出示教学目标)

3、导学达标

按"教师为主导,学生为主体,训练为主线"的原则,安排师生互动活动。

(1)对数函数的概念

引导学生从对数式与指数式的关系及反函数的概念进行分析并推导出,指数函数有反函数,并且y=ax(a>0且a≠1)的反函数是 y=logax,见课件。把函数y=logax叫做对数函数,其中a>0且a≠1.从而引出对数函数的概念,展示课件。

设计意图:对数函数的概念比较抽象,利用已经学过的知识逐步分析,这样引出对数函数的概念过渡自然,学生易于接受。因为对数函数是指数函数的反函数,让学生比较它们的定义域、值域、对应法则及图象间的关系,培养学生参与意识,通过比较充分体现指数函数及对数函数的内在联系。

(2)对数函数的图象

提问:同指数函数一样,在学习了函数的定义之后,我们要画函数的图象,应如何画对数函数的图象呢?让学生思考并回答,用描点法画图。教师肯定,我们每学习一种新的函数都可以根据函数的解析式,列表、描点画图。再考虑一下,我们还可以用什么方法画出对数函数的图象呢?

让学生回答,画出指数函数关于直线y=x对称的图象,就是对数函数的图象。

教师总结:我们画对数函数的图象,既可用描点法,也可用图象变换法,下边我们利用两种方法画对数函数的图象。

方法一(描点法)首先列出x,y(y=log2x,y=log x)值的对应表,因为对数函数的定义域为x>0,因此可取x=··· , , ,1,2,4,8···,请计算对应的y值,然后在坐标系内描点、画出它们的图象。

方法二(图象变换法)因为对数函数和指数函数互为反函数, 图象关于直线y=x对称,所以只要画出y=ax的图象关于直线y=x对称的曲线,就可以得到y=logax.的图象。学生动手做实验,先描出y=2x的图象,画出它关于直线y=x对称的曲线,它就是y=log2x的图象;类似的从y=( )x 的图象画出y=log x的图象,再出示课件,教师加以解释。

设计意图:用这种对称变换的方法画函数的图象,可以加深和巩固学生对互为反函数的两个函数之间的认识,便于将对数函数的图象和性质与指数函数的图象和性质对照,但使用描点法画函数图象更为方便,两种方法可同时进行,分析画法之后,可让学生自由选择画法。这样可以充分调动学生自主学习的积极性。

(3)对数函数的性质

在理解对数函数定义的基础上,掌握对数函数的图象和性质是本节的重点,关键在于抓住对数函数是指数函数的反函数这一要领,讲对数函数的性质,可先在同一坐标系内画出上述两个对数函数的图象,根据图象让学生列表分析它们的图象特征和性质,然后出示课件,教师补充。作了以上分析之后,再分a>1与0

设计意图:这种讲法既严谨又直观易懂,还能让学生主动参与教学过程,对培养学生的创新能力有帮助,学生易于接受易于掌握,而且利用表格,可以突破难点。

由于对数函数和指数函数互为反函数,它们的定义域与值域正好互换,为了揭示这两种函数之间的内在联系,列出指数函数与对数函数对照表(见课件)

设计意图:通过比较对照的方法,学生更好地掌握两个函数的定义、图象和性质,认识两个函数的内在联系,提高学生对函数思想方法的认识和应用意识。

4、巩固达标(见课件)

这一训练是为了培养学生利用所学知识解决实际问题的能力,通过这个环节学生可以加深对本节知识的理解和运用,并从讲解过程中找出所涉及的知识点,予以总结。充分体现"数形结合"和"分类讨论"的思想。

5、反馈练习(见课件)

习题是对学生所学知识的反馈过程,教师可以了解学生对知识掌握的情况。

6、归纳总结(见课件)

引导学生对主要知识进行回顾,使学生对本节有一个整体的把握,因此,从三方面进行总结:对数函数的概念、对数函数的图象和性质、比较对数值大小的方法。

7、课外作业 :

(1)完成P78 2、3题

(2)当底数a>1与0

五、说板书

板书设计为表格式(见课件),这样的板书简明清楚,重点突出,加深学生对图象和性质的理解和掌握,便于记忆,有利于提高教学效果。

10、对数函数说课稿

尊敬的各位专家、评委:

上午好!

今天我说课的课题是人教A版必修1第二章第二节《对数函数》。

我尝试利用新课标的理念来指导教学,对于本节课,我将以“教什么,怎么教,为什么这样教”为思路,从教材分析、目标分析、教法学法分析、教学过程分析和评价分析五个方面来谈谈我对教材的理解和教学的设计,敬请各位专家、评委批评指正。

一、教材分析

地位和作用

本章学习是在学生完成函数的第一阶段学习(初中)的基础上,进行第二阶段的函数学习。而对数函数作为这一阶段的重要的基本初等函数之一,它是在学生已经学习了指数函数及对数的内容,这为过渡到本节的学习起着铺垫作用。“对数函数”这节教材,是在没有学习反函数的基础上研究的指数函数和对数函数的自变量和因变量之间的关系。同时对数函数作为常用数学模型在解决社会生活中的实例有着广泛的应用,本节课的学习为学生进一步学习,参加生产和实际生活提供必要的基础知识。

二、目标分析

(一)、教学目标

根据《对数函数》在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下的教学目标:

1、知识与技能

(1)、进一步体会函数是描述变量之间的依赖关系的重要数学模型;

(2)、理解对数函数的概念、掌握对数函数的图像和性质;

(3)、由实际问题出发,培养学生探索知识和抽象概括知识等方面的能力。

2、过程与方法

引导学生观察,探寻变量和变量的对应关系,通过归纳、抽象、概括,自主建构对数函数的概念;体验结合旧知识探索新知识,研究新问题的快乐。

3、情感态度与价值观

通过对对数函数函数图像和性质的探究过程,培养学生发现问题,探索问题,不断超越的创新品质。在民主、和谐的教学气氛中,促进师生的情感交流。

(二)教学重点、难点及关键

1、重点:对数函数的概念、图像和性质;在教学中只有突出这个重点,才能使教材脉络分明,才能有利于学生联系旧知识,学习新知识。

2、 难点:底数a对对数函数的图像和性质的影响。

[关键]对数函数与指数函数的类比教学。

由指数函数的图像过渡到对数函数的图像,通过类比分析达到深刻地了解对数函数的图像及其性质是掌握重点和突破难点的关键,在教学中一定要使学生的思考紧紧围绕图像,数形结合,加强直观教学,使学生能形成以图像为根本,以性质为主体的知识网络,同时在立体的讲解中,重视加强题组的设计和变形,使教学真正体现出由浅入深,由易到难,由具体到抽象的特点,从而突破重点、突破难点。

三、教法、学法分析

(一)、教法

教学过程是教师和学生共同参与的过程,启发学生自主性学习,充分调动学生的积极性、主动性;有效地渗透数学思想方法,提高学生素质。根据这样的原则和所要完成的教学目标,并为激发学生的学习兴趣,我采用如下的教学方法:

1、启发引导学生思考、分析、实验、探索、归纳;

2、采用“从特殊到一般”、“从具体到抽象”的方法;

3、体现“对比联系”、“数形结合”及“分类讨论”的思想方法;

4、投影仪演示法。

在整个过程中,应以学生看,学生想,学生议,学生练为主体,教师在学生仔细观察、类比、想象的基础上通过问题串的形式加以引导点拨,与指数函数性质对照,归纳,整理,只有这样,才能唤起学生对原有知识的回忆,自觉地找到新旧知识的联系,使新学知识更牢固,理解更深刻。

(二)、学法

教给学生方法比教给学生知识更重要,本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

1、对照比较学习法:学习对数函数,处处与指数函数相对照;

2、探究式学习法:学生通过分析、探索,得出对数函数的定义;

3、自主性学习法:通过实验画出函数图像、观察图像自得其性质;

4、反馈练习法:检验知识的应用情况,找出未掌握的内容及其差距。

四、教学过程分析

(一)、教学过程设计

1、创设情境,提出问题。

在某细胞分裂过程中,细胞个数y是分裂次数x的函数y=2x,因此,知道x的值(输入值是分裂次数)就能求出y的值(输出值为细胞的个数),这样就建立了一个细胞个数和分裂次数x之间的函数关系式。

问题一:这是一个怎样的函数模型类型呢?

设计意图

复习指数函数

问题二:现在我们来研究相反的问题,如果知道了细胞的个数y,如何求分裂的次数x呢?这将会是我们研究的哪类问题?

设计意图

为了引出对数函数

问题三:在关系式x=log2y每输入一个细胞的个数y的值,是否一定都能得到唯一一个分裂次数x的值呢?

设计意图

(1)、为了让学生更好地理解函数;

(2)、为了让学生更好地理解对数函数的概念。

2、引导探究,建构概念。

(1)、对数函数的概念:

同样,在前面提到的发射性物质,经过的时间x年与物质剩余量y的关系式为y=0.84x,我们也可以把它改成对数式x=log0.84y,其中x年夜可以看作物质剩余量y的函数,可见这样的问题在现实生活中还是不少的。

设计意图

前面的问题情景的底数为2,而这个问题情景的底数是0.84,我认为这个情景并不是多余的,其实它暗示了对数函数的底数与指数函数的底数一样有两类。

但是在习惯上,我们用x表示自变量,用y表示函数值。

问题一:你能把以上两个函数表示出来吗?

问题二:你能得到此类函数的一般式吗?

设计意图

体现出了由特殊到一般的数学思想

问题三:在y=logax中,a有什么限制条件吗?请结合指数式给以解释。

问题四:你能根据指数函数的定义给出对数函数的定义吗?

问题五:x=logay与y=ax中的x,y的相同之处是什么?不同之处是什么?

设计意图

前四个问题是为了引导出对数函数的概念,然而,光有前四个问题还是不够的,学生最容易忽略或最不容易理解的是函数的定义域,所以设计这个问题是为了让学生更好地理解对数函数的定义域。

(2)、对数函数的图像与性质

问题:有了研究指数函数的经历,你觉得下面该学习什么内容了?

设计意图

提示学生进行类比学习

合作探究1:借助计算器在同一直角坐标系中画出下列两组函数的图像,并观察各族函数图像,探求他们之间的关系。

y=2x;y=log2x y=( )x,y=log x

合作探究2:当a>0,a≠ 1,函数y=ax与y=logax图像之间有什么关系?

设计意图

在这儿体现“从特殊到一般”、“从具体到抽象”的方法。

合作探究3:分析你所画的两组函数的图像,对照指数函数的性质,总结归纳对数函数的性质。

设计意图

学生讨论并交流各自的而发现成果,教师结合学生的交流,适时归纳总结,并板书对数函数的性质)。问题1:对数函数y=logax( a>0,a≠1,)是否具有奇偶性,为什么?

问题2:对数函数y=logax( a>0,a≠1,),当a>1时,x取何值,y>0,x取何值,y<0,当0

问题3:对数式logab的值的符号与a,b的取值之间有何关系?

知识拓展:函数y=ax称为y=logax的反函数,反之,也成立,一般地,如果函数y=f(x)存在反函数,那么它的反函数记作y=f-1(x)。

3、自我尝试,初步应用。

例1:求下列函数的定义域

y=log0.2(4-x)(该题主要考查对函数y=logax的定义域(0,+∞)这一限制条件,根据函数的解析式求得不等式,解对应的不等式。)

例2:利用对数函数的性质,比较下列各组数中两个数的大小:

(1)、2 3.4,log2 3.8;

(2)、log0.5 1.8,log0.5 2.1;

(3)、log7 5,log6 7

(在这儿要求学生通过回顾指数函数的有关性质比较大小的步骤和方法,完成完成前两题,最后一题可以通过教师的适当点拨完成解答,最后进行归纳总结比较数的大小常用的方法)

合作探究4:已知logm 4

设计意图

该题不仅运用了对数函数的图像和性质,还培养了学生数形结合、分类讨论等数学思想。

4、当堂训练,巩固深化。

通过学生的主体性参与,使学生深刻体会到本节课的主要内容和思想方法,从而实现对知识的再次深化。

采用课后习题1,2,3.

5、小结归纳,回顾反思。

小结归纳不仅是对知识的简单回顾,还要发挥学生的主体地位,从知识、方法、经验等方面进行总结。

(1)、小结:

①对数函数的概念

②对数函数的图像和性质

③利用对数函数的性质比较大小的一般方法和步骤,

(2)、反思

我设计了三个问题

①、通过本节课的学习,你学到了哪些知识?

②、通过本节课的学习,你最大的体验是什么?

③、通过本节课的学习,你掌握了哪些技能?

(二)、作业设计

作业分为必做题和选做题,必做题是对本节课学生知识水平的反馈,选做题是对本节课内容的延伸与连贯,强调学以致用。通过作业设置,使不同层次的学生都可以获得成功的喜悦,看到自己的潜能,从而激发学生饱满的学习兴趣,促进学生的自主发展、合作探究的学习氛围的形成。

我设计了以下作业:

必做题:课后习题A 1,2,3;

选做题:课后习题B 1,2,3;

(三)、板书设计

板书要基本体现课堂的内容和方法,体现课堂进程,能简明扼要反映知识结构及其相互关系:能指导教师的教学进程、引导学生探索知识;通过使用幻灯片辅助板书,节省课堂时间,使课堂进程更加连贯。

五、评价分析

学生学习的结果评价固然重要,但是更重要的是学生学习的过程评价。我采用了及时点评、延时点评与学生互评相结合,全面考查学生在知识、思想、能力等方面的发展情况,在质疑探究的过程中,评价学生是否有积极的情感态度和顽强的理性精神,在概念反思过程中评价学生的归纳猜想能力是否得到发展,通过巩固练习考查学生对本节是否有一个完整的集训,并进行及时的调整和补充。

以上就是我对本节课的理解和设计,敬请各位专家、评委批评指正。

谢谢!

11、对数函数的图像与性质说课稿

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本初等函数之一.本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数在生产、生活实践中都有许多应用.本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识.

2、教学目标的确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:理解对数函数的意义;掌握对数函数的图像与性质;初步学会用

对数函数的性质解决简单的问题.

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、

分析、归纳等逻辑思维能力.

(3)情感目标:通过指数函数和对数函数在图像与性质上的对比,使学生欣赏数

学的精确和美妙之处,调动学生学习数学的积极性.

3、教学重点与难点

重点:对数函数的意义、图像与性质.

难点:对数函数性质中对于在与两种情况函数值的不同变化.

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法.根据这样的原则和所要完成的教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生实验、观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透类比、数形结合、分类讨论等数学思想方法.

2、教学手段:

计算机多媒体辅助教学.

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身.本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)类比学习:与指数函数类比学习对数函数的图像与性质.

(2)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,

归纳得出对数函数的图像与性质.

(3)主动合作式学习:学生在归纳得出对数函数的图像与性质时,通过小组讨论,

使问题得以圆满解决.

四、说教程

1、温故知新

我通过复习细胞分裂问题,由指数函数引导学生逐步得到对数函数的意义及对数函数与指数函数的关系:互为反函数.

设计意图:既复习了指数函数和反函数的`有关知识,又与本节内容有密切关系,

有利于引出新课.为学生理解新知清除了障碍,有意识地培养学生

分析问题的能力.

2、探求新知

在理解对数函数的意义的基础上,研究对数函数的图像与性质.关键是抓住对数函数与指数函数互为反函数的关系,图像关于直线对称,从而作出对数函数的图像.由学生自主作出对数函数和的图像后,引导学生填写所发表格(该表格一列填有在及两种情况下的图像与性质),通过类比学习,小组讨论,采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质.

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”.另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识.

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过动手操作、

观察、联想、类比、思考、分析、探索,在此过程中,通过小组讨论,

协作构建起新的知识.这充分体现了基于建构主义学习理论的探究定

向性学习和主动合作式学习.

3、课堂研究,巩固应用

例1主要利用对数函数的定义域是来求解.在这个例题中,重点、难点是第三小题的理解.这一小题是课后练习“求函数(其中)的定义域”这道题目的变形.我觉得让学生直接解决课后练习有较大困难,因此设计了“求函数的定义域”这一小题;理解了这个小题,课后练习也就迎刃而解了.而在解题过程中,学生发现求解不等式是一个难点.我在解决这一难点时,采用了两种方法:一是启发学生将“0”写成1的对数,并且是写成,这样就可以利用对数函数的单调性求出不等式的解,最后向学生介绍不等式是一个对数不等式;二是引导学生观察对数函数的图像,通过数形结合来求解不等式.

例2利用对数函数的单调性,比较两个同底对数值的大小.在这个例题中,注意第三小题的点拨,要分底数及两种情况.

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充

分体现了数形结合和分类讨论的数学思想方法.同时为课外研究题的

解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔.

4、课外研究

使学生学会知识的迁移,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题.

5、课堂小结

引导学生进行知识回顾,使学生对本节课有一个整体把握.从三方面进行小结:

(1)理解对数函数的意义;

(2)掌握对数函数的图像与性质,体会类比、数形结合的思想方法;

(3)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的

解法,体会分类讨论的思想方法.

6、课外作业

公式无法显示,完整WORD文档点击下载此文件

12、高一数学必修1说课稿 对数函数及其性质

一、教学背景

1、教材分析

《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

2、学情分析

刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

基于以上分析,我制定如下教学目标及重、难点:

3、教学目标

知识与技能:

初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

过程与方法:

经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

情感态度与价值观:

培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

4、教学重、难点

重点:理解对数函数的概念,掌握对数函数的图象及性质。

难点:由图象探究函数性质,应用性质解决具体问题。

二、教学方法及手段

1、教法

根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

2、学法

(1)类比学习:通过指数函数类比学习对数函数。

(2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

3、教学手段

采用多媒体辅助教学。

三、教学教程

1、情境引入

通过银行的复利计算问题,逐步引出对数函数。

设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

2、新知探索

通过上述模型,让学生给对数函数下定义。

学生用描点法画和的`图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

例比较下列各组数中两个值的大小:

(1)log23.4和log28.5;

(2) log0.33.4和log0.38.5;

(3) loga3.4和loga8.5(a>0,且a≠1);

(4) log23.4和log3.42;

(5) log3.42和log0.38.5。

3、巩固练习

(1)比较大小:

lg6________lg8;ln1.3________

(2)比较正数m,n的大小:

若,则m_____n;若,则m_____n.

4、总结提炼

(1)自主探究新知识的方法;

(2)本节课应用了哪些数学思想。

5、布置作业

(1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

(2)教材P74—7、8

四、板书设计

2.2.2对数函数及其性质

一、概念例题

二、图象

三、性质

四、教学反思

13、《对数函数的图像与性质》说课稿

《对数函数的图像与性质》说课稿

作为一名老师,时常要开展说课稿准备工作,编写说课稿助于积累教学经验,不断提高教学质量。说课稿应该怎么写才好呢?以下是小编帮大家整理的《对数函数的图像与性质》说课稿,希望对大家有所帮助。

一、说教材

1、教材的地位和作用

函数是高中数学的核心,而对数函数是高中阶段所要研究的重要的基本函数之一。本节内容是在学生已经学过指数函数、对数及反函数的基础上引入的,因此既是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解。对数函数在生产、生活实践中都有许多应用。本节课的学习使学生的知识体系更加完整、系统,为学生今后进一步学习对数等提供了必要的基础知识。

2、教学目标的.确定及依据

根据教学大纲要求,结合教材,考虑到学生已有的认知结构心理特征,我制定了如下的教学目标:

(1)知识目标:掌握对数函数的图像与性质;初步学会用对数函数的性质解决简单的问题。

(2)能力目标:渗透类比、数形结合、分类讨论等数学思想方法,培养学生观察、分析、归纳等逻辑思维能力。

(3)情感目标:构造和谐的教学氛围,增加互动,促进师生情感交流,培养学生严谨的科学态度,欣赏数学的精确和美妙之处,调动学生学习数学的积极性。

3、教学重点与难点

重点:对数函数的图像与性质。

难点:对数函数性质中对于在与两种情况函数值的不同变化。

二、说教法

学生在整个教学过程中始终是认知的主体和发展的主体,教师作为学生学习的指导者,应充分地调动学生学习的积极性和主动性,有效地渗透数学思想方法。根据这样的原则和所要完成的.教学目标,对于本节课我主要考虑了以下两个方面:

1、教学方法:

(1)启发引导学生观察、联想、思考、分析、归纳;

(2)采用“从特殊到一般”、“从具体到抽象”的方法;

(3)渗透数形结合、分类讨论等数学思想方法;

(4)用探究性教学、提问式教学和分层教学。

2、教学手段:

计算机多媒体辅助教学。

三、说学法

“授之以鱼,不如授之以渔”,方法的掌握,思想的形成,才能使学生受益终身。本节课注重调动学生积极思考、主动探索,尽可能地增加学生参与教学活动的时间和空间,我进行了以下学法指导:

(1)探究定向性学习:学生在教师建立的情境下,通过思考、分析、操作、探索,归纳得出对数函数的图像与性质。

(2)主动式学习:学生自己归纳得出对数函数的图像与性质。

四、说教程

1、温故知新

我通过复习y=log2x和y=log0.5x的图像,让学生熟悉两个具体的对数函数的图像。

设计意图:这与本节内容有密切关系,有利于引出新课。为学生理解新知清除了障碍,有意识地培养学生分析问题的能力。

2、探求新知

研究对数函数的图像与性质。关键是学生自主的对函数和的图像分析归纳,引导学生填写表格(该表格一列填有在及两种情况下的图像与性质),采用“从特殊到一般”、“从具体到抽象”的方法,归纳总结出的图像与性质。

在学生得出对数函数的图像和性质后,教师再加以升华,强调“数形结合”记忆其性质,做到“心中有图”。另外,对于对数函数的性质3和性质4在用多媒体演示时,有意识地用(1)(2)进行分类表示,培养学生的分类意识。

设计意图:教师建立了一个有助于学生进行独立探究的情境,学生通过观察、联想、思考、分析、探索,在此过程中,这充分体现了探究定向性学习和主动合作式学习。

3、课堂研究,巩固应用

例1主要利用对数函数的定义域是来求解。

例2利用对数函数的单调性,比较两个同底对数值的大小。在这个例题中,注意第三小题的点拨,选择和中间量0或1比较,第四小题要分底数两种情况。

例3解对数不等式,实际是例2的一种逆向运算,已知对数值的大小,比较真数,任然要使用对数函数的单调性。

设计意图:通过这个环节学生可以加深对本节知识的理解和运用,在此过程中充分体现了数形结合和分类讨论的数学思想方法。同时为课外研究题的解决提供了必要条件,为学生今后进一步学习对数不等式埋下伏笔。

4、巩固练习

使学生学会知识的迁移,两个练习紧扣本节内容,利用课堂研究中体现的重要的数形结合和分类讨论的数学思想方法,学生课后完全有能力解决这个问题。

5、课堂小结

引导学生进行知识回顾,使学生对本节课有一个整体把握。从两方面进行小结:

(1)掌握对数函数的图像与性质,体会数形结合的思想方法;

(2)会利用对数函数的性质比较两个同底对数值的大小,初步学会对数不等式的解法,体会分类讨论的思想方法。

6、作业:p97习题3,4,5

选做题6题

14、高一数学必修1说课稿 对数函数及其性质

一、教学背景

1、教材分析

《对数函数及其性质》是人教版普通高中课程数学必修1第二章第二节第二部分内容,对数函数是一类特殊的函数,在实际生产过程中运用很广泛。同时,通过对对数函数及其图象和性质的研究,既可以从具体的感性认识上来对函数的图象和性质更好的理解,也可为以后研究幂函数、三角函数等其它函数的图象和性质起示范和铺垫作用。

2、学情分析

刚入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,对数函数又以对数运算为基础,同时,初中函数教学要求降低,导致初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。但在此之前,学生已经学习了指数函数及其性质,学生已经初步对新函数的研究方法有所了解,为本节的学习奠定了基础。

基于以上分析,我制定如下教学目标及重、难点:

3、教学目标

知识与技能:

初步掌握对数函数的概念、图象及性质,并应用性质解决简单数学问题。

过程与方法:

经历对数函数性质的探索过程,体会函数思想、分类讨论思想和转化思想在解决具体问题中的应用。

情感态度与价值观:

培养勇于探索的精神,培养学生的成功意识,合作交流的学习方式,激发学生学习数学、应用数学的兴趣。

4、教学重、难点

重点:理解对数函数的概念,掌握对数函数的'图象及性质。

难点:由图象探究函数性质,应用性质解决具体问题。

二、教学方法及手段

1、教法

根据建构主义的学习理论和新课程标准理念,本节课以自主探究法和讲解法为主,以练习法为辅,引导学生自己观察、归纳、分析,培养学生采用自主探究的方法进行学习,使学生体会学习的乐趣。

2、学法

(1)类比学习:通过指数函数类比学习对数函数。

(2)小组合作学习:将学生分成7个小组,通过小组内讨论交流,归纳得出对数函数的图象和性质。

3、教学手段

采用多媒体辅助教学。

三、教学教程

1、情境引入

通过银行的复利计算问题,逐步引出对数函数。

设计意图:情景来源于生活,通过生活中的实例来反应对数函数的重要性,目的在于激发学生学习的兴趣,让每一个学生都主动融入到学习中。

2、新知探索

通过上述模型,让学生给对数函数下定义。

学生用描点法画和的图象,教师再借助于计算机再画几个对数函数的图象,让学生观察并总结出一般情况。

以“你们能根据图象归纳出对数函数的性质吗?”设问,引导学生能过图象的特征得出对应的性质。

例比较下列各组数中两个值的大小:

(1)log23.4和log28.5;

(2) log0.33.4和log0.38.5;

(3) loga3.4和loga8.5(a>0,且a≠1);

(4) log23.4和log3.42;

(5) log3.42和log0.38.5。

3、巩固练习

(1)比较大小:

lg6________lg8;ln1.3________

(2)比较正数m,n的大小:

若,则m_____n;若,则m_____n.

4、总结提炼

(1)自主探究新知识的方法;

(2)本节课应用了哪些数学思想。

5、布置作业

(1)阅读教材P70~P72,梳理对数函数的概念、图象、性质等知识点;

(2)教材P74—7、8

四、板书设计

2.2.2对数函数及其性质

一、概念例题

二、图象

三、性质

四、教学反思

15、高一数学必修1《对数函数》说课稿

一、教材的本质、地位与作用

对数函数(第二课时)是xxxx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用.

二、教学目标

根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:

学习目标:

1、复习巩固对数函数的图像及性质

2、运用对数函数的性质比较两个数的大小

能力目标:

1、培养学生运用图形解决问题的意识即数形结合能力

2、学生运用已学知识,已有经验解决新问题的能力

3、探索出方法,有条理阐述自己观点的能力

德育目标:

培养学生勤于思考、独立思考、合作交流等良好的个性品质

三、教材的重点及难点

对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的.大小

教学中将在以下2个环节中突出教学重点:

1、利用学生预习后的心得交流,资源共享,互补不足

2、通过适当的练习,加强对解题方法的掌握及原理的理解

另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小

教学中会在以下3个方面突破教学难点:

1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。

2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。

3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

四、学生学情分析

长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。

学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。

五、教法特点

新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

六、教学过程分析

1、课件展示本节课学习目标

设计意图:明确任务,激发兴趣

2、温故知新(已填表形式复习对数函数的图像和性质)

设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。

3、预习后心得交流

1)同底对数比大小

2)既不同底数,也不同真数的对数比大小

以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固

设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。

4、合作探究——同真异底型的对数比大小

以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。

设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。

5、小结

以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法

6、思考题

以xxxx高考题为例,让学生学以致用,增强数学学习兴趣。

7、作业

包括两个方面:

1、书写作业

2、下节课前的预习作业

七、教学效果分析

通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。

16、高中数学《对数函数(第二课时)》说课稿

一、教材的本质、地位与作用

对数函数(第二课时)是20xx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。

二、教学目标

根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:

学习目标:

1、复习巩固对数函数的图像及性质

2、运用对数函数的性质比较两个数的大小

能力目标:

1、培养学生运用图形解决问题的意识即数形结合能力

2、学生运用已学知识,已有经验解决新问题的能力

3、探索出方法,有条理阐述自己观点的能力

德育目标:

培养学生勤于思考、独立思考、合作交流等良好的个性品质

三、教材的重点及难点

对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小

教学中将在以下2个环节中突出教学重点:

1、利用学生预习后的心得交流,资源共享,互补不足

2、通过适当的练习,加强对解题方法的掌握及原理的理解

另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小

教学中会在以下3个方面突破教学难点:

1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。

2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。

3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

四、学生学情分析

长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。

学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的能力还需加强锻炼,知识之间的联系认识上还显不足。

五、教法特点

新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

六、教学过程分析

1、课件展示本节课学习目标

设计意图:明确任务,激发兴趣

2、温故知新(已填表形式复习对数函数的图像和性质)

设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。

3、预习后心得交流

1)同底对数比大小

2)既不同底数,也不同真数的对数比大小

以课本例题为例,交流解题思路,题后总结此类型比大小问题的.一般方法,而后通过练习加强理解巩固

设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。

4、合作探究——同真异底型的对数比大小

以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。

设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现"授之以鱼,不如授之以渔"的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到"脑中有图",以"形"促"数"。

5、小结

以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法

6、思考题

以高考题为例,让学生学以致用,增强数学学习兴趣。

7、作业

包括两个方面:1、书写作业2、下节课前的预习作业

七、教学效果分析

通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。

17、高中数学必修1《对数函数(第二课时)》说课稿

一、教材的本质、地位与作用

对数函数(第二课时)是xxxx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。

二、教学目标

根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下:

学习目标:

1、复习巩固对数函数的图像及性质

2、运用对数函数的性质比较两个数的大小

能力目标:

1、培养学生运用图形解决问题的意识即数形结合能力

2、学生运用已学知识,已有经验解决新问题的能力

3、探索出方法,有条理阐述自己观点的能力

德育目标:

培养学生勤于思考、独立思考、合作交流等良好的个性品质

三、教材的重点及难点

对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小

教学中将在以下2个环节中突出教学重点:

1、利用学生预习后的心得交流,资源共享,互补不足

2、通过适当的练习,加强对解题方法的掌握及原理的理解

另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小问题———同真异底型,对于学生以小组为单位自主探究有一定的挑战性。所以确定本节课难点:同真异底的对数比大小

教学中会在以下3个方面突破教学难点:

1、教师调整角色,让学生成为学习的主人,教师在其中起引导作用即可。

2、小组合作探索新问题时,注重生生合作、师生互动,适时用语言鼓励学生,增强学生参与讨论的自信。

3、本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

四、学生学情分析

长处:高一学生经过几年的数学学习,已具备一定的数学素养,对于已学知识或用过的数学思想、方法有一定的应用能力及应用意识,对于本节课而言,从知识上说,对数函数的图像和性质刚刚学过,本节课是知识的应用,从数学能力上说,指数比大小问题的解题思想和方法在这可借鉴,另外数形结合能力、小结概括能力、特殊到一般归纳能力已具备一点。

学生可能遇到的困难:本节课从教学内容上来看,第三类对数比大小是课本以外补充的内容,没有预习心得,让学生在课堂中快速通过合作探究来完成解题思路的构建,有一定的挑战性,从学生能力上来看,探索出方法,有条理阐述自己观点的`能力还需加强锻炼,知识之间的联系认识上还显不足。

五、教法特点

新课程强调教师要调整自己的角色,改变传统的教育方式,在教育方式上,以学生为中心,让学生成为学习的主人,教师在其中起引导作用即可。基于此,本节课遵循此原则重点采用问题探究和启发引导式的教学方法。从预习交流心得出发,到探索新问题,再到题后的回顾总结,一切以学生为中心,处处体现学生的主体地位,让学生多说、多分析、多思考、多总结,引导学生运用自己的语言阐述观点,加强理解,在生生合作,师生互动中解决问题,为提高学生分析问题、解决问题能力打下基础。本节课采用多媒体辅助教学,节省时间,加快课程进度,增强了直观形象性。

六、教学过程分析

1、课件展示本节课学习目标

设计意图:明确任务,激发兴趣

2、温故知新(已填表形式复习对数函数的图像和性质)

设计意图:复习已学知识和方法,为学生形成知识间的联系和框架建立平台,并为下一步的应用打下基础。

3、预习后心得交流

1)同底对数比大小

2)既不同底数,也不同真数的对数比大小

以课本例题为例,交流解题思路,题后总结此类型比大小问题的一般方法,而后通过练习加强理解巩固

设计意图:通过学生的预习,自己总结方法及此方法适用的题型,有条理的阐述自己的学习心得,老师只需起引导作用,引导学生从题目表面上升到题目的实质,从而找到解决问题的有效方法。

4、合作探究——同真异底型的对数比大小

以例3为例,学生分组合作探究解题方法,预计两种:一是利用换底公式将此类型转化为同底异真型,利用之前总结的方法解决此问题。二是利用具体对数的大小关系探究出不同底对数函数在同一直角坐标系中的图像,以此来解决此类型比大小问题。

设计意图:这一部分是本节课的难点,探究中充分发挥学生的主动性,培养主动学习的意识,同时也锻炼学生各方面能力的很好机会,为以后的探究学习积累经验和方法,充分体现“授之以鱼,不如授之以渔”的教学理念。另外数学问题的解决仅仅只是一半,更重要的是解题之后的回顾,即反思,如果没有了反思,他们就错过了解题的一次重要而有效益的方面。因此,本题解决后,让学生反思明白,要想利用性质解决问题,关键要做到“脑中有图”,以“形”促“数”。

5、小结

以学生自主小结的方式总结本节课得收获,教师可引导小结三个方面:所学内容、数学思想、数学方法

6、思考题

以xxxx高考题为例,让学生学以致用,增强数学学习兴趣。

7、作业

包括两个方面:1、书写作业;2、下节课前的预习作业。

七、教学效果分析

通过本节课的教学实例来看,这种通过课本内容预习,而后课堂交流学习成果的方法效果不错,既能很好的完成教学任务,又能充分发挥学生学习的主动性。在自主探究时,学生分组讨论过程中,我参与小组讨论,对有能力的小组,在探究出一种方法后,可鼓励完成更多的方法探究,对于能力较弱的小组,可给予适当的提示,使学生都能动起来,课堂都有所收获,增强学生自信。另外,对于学生的总结回答,可能会比较慢,我一定会耐心听,及时鼓励,给予学生微笑和语言的鼓励,效果很好。在小结环节中,对于高一学生自己小结的方法,是我一直的教学尝试,由于只训练了半学期,学生只能达到小结知识的程度,在以后的训练中还会加入数学思想、数学方法的小结内容,使这些数学名词让学生不再觉得抽象,而是变成具体的,可操作的、具体的解题工具。

18、高中数学必修一说课稿 函数的概念说课稿

尊敬的各位评委、老师们:

大家好!

今天我说课的内容是《函数的概念》,选自人教版高中数学必修一第一章第二节。下面介绍我对本节课的设计和构思,请您多提宝贵意见。

我的说课有以下六个部分:

一、背景分析

1、学习任务分析

本节课是必修1第1章第2节的内容,是函数这一章的起始课,它上承集合,下引性质,与方程、不等式、数列、三角函数、解析几何、导数等内容联系密切,是学好后继知识的基础和工具,所以本节课在数学教学中的地位和作用是至关重要的。

2、学情分析

学生在初中已经学习了函数的概念,初步具备了学习函数概念的基本能力,但函数的概念从初中的变量学说到高中阶段的对应说很抽象,不易理解。

另外,通过对集合的学习,学生基本适应了有效教学的课堂模式,初步具备了小组合作、自主探究的学习能力。

基于以上的分析,我认为本节课的教学重点为:函数的概念以及构成函数的三要素;

教学难点为:函数概念的'形成及理解。

二、教学目标设计

根据《课程标准》对本节课的学习要求,结合本班学生的情况,故而确立本节课的教学目标。

1、知识与技能(方面)

通过丰富的实例,让学生

①了解函数是非空数集到非空数集的一个对应;

②了解构成函数的三要素;

③理解函数概念的本质;

④理解f(x)与f(a)(a为常数)的区别与联系;

⑤会求一些简单函数的定义域。

2、过程与方法(方面)

在教学过程中,结合生活中的实例,通过师生互动、生生互动培养学生分析推理、归纳总结和表达问题的能力,在函数概念的构建过程中体会类比、归纳、猜想等数学思想方法。

3、情感、态度与价值观(方面)

让学生充分体验函数概念的形成过程,参与函数定义域的求解过程以及函数的求值过程,使学生感受到数学的抽象美与简洁美。

三、课堂结构设计

为充分调动学生的学习积极性,变被动学习为主动愉快的探究,我使用有效教学的课堂模式,课前学生通过结构化预习,完成问题生成单,课中采用师生互动、小组讨论、学生展写、展讲例题,教师点评的方式完成问题解决单,课后完成问题拓展单,课堂结构包含:

复习旧知,引出课题(约2分钟)创设情境,形成概念(约5分钟)剖析概念(约12分钟)例题分析,巩固知识——小组讨论,展写例题(约8分钟)小组展讲,教师点评(约10分钟)总结反思,知识升华(约2分钟)(最后)布置作业,拓展练习。

四、教学媒体设计

教学中利用投影与黑板相结合的形式,利用投影直观、生动地展示实例,并能增加课堂容量;利用黑板列举本节重要内容,使学生对所学内容有一整体认识,并让学生利用黑板展写、展讲例题,有问题及时发现及时解决。

五、教学过程设计

本节课围绕问题的解决与重难点的突破,设计了下面的教学过程。

整个教学过程按四个环节展开:

首先,在第一环节——复习旧知,引出课题,先由两个问题导入新课

①初中时函数是如何定义的?

②y=1是函数吗?

[设计意图]:学生通过对这两个问题的思考与讨论,发现利用初中的定义很难回答第②个问题,从而激起他们的好奇心:高中阶段的函数概念会是什么?激发他们学习本节课的强烈愿望和情感,使他们处于积极主动的探究状态,大大提高了课堂效率。

从学生的心理状态与认知规律出发,教学过程自然过渡到第二个环节——函数概念的形成。

由于高中阶段的函数概念本身比较抽象,看不见也摸不着,不易直接给出,因此在本环节中,我主要通过学生能看见能感知的生活中的3个实例出发,由具体到抽象,由特殊到一般,一步步归纳形成函数的概念,此过程我称之为“创设情境,形成概念”。

对于这3个实例,我分别预设一个问题让学生思考与体会。

问题1:从炮弹发射到落地的0-26s时间内,集合A是否存在某一时间t,在B中没有高度h与之对应?是否有两个或多个高度与之相对应?

问题2:从1979—20xx年,集合A是否存在某一时间t,在B中没有面积S与之对应?是否有两个或多个面积与它相对应吗?

问题3:从1991—20xx年间,集合A中是否存在某一时间t,在B中没恩格尔系数与之对应?是否会有两个或多个恩格尔系数与对应?

[设计意图]:通过循序渐进地提问,变教为诱,以诱达思,引导学生根据问题总结3个实例的各自特点,并综合各自特点,归纳它们的公共特征,着重向学生渗透集合与对应的观点,这样,再让学生经历由具体到抽象的概括过程,用集合、对应的语言来描述函数时就显得水到渠成,难点得以突破。

函数的概念既已形成,本节课自然进入了第3个环节——剖析概念,理解概念。

函数概念的理解是本节课的重点也是难点,概念本身比较抽象,学生在理解上可能把握不准确,所以我分两个步骤来进行剖析,由具体到抽象,螺旋上升。

首先,在学生熟读熟背函数概念的基础上,我设计一个学生活动,让学生充分参与,在参与中体会学习的快乐。

我利用多媒体制作一个表格,请学号为01—05的同学填写自己上次的数学考试成绩,并提出3个问题:

问题1:若学号构成集合A,成绩构成集合B,对应关系f:上次数学考试成绩,那么由A到B能否构成函数?

问题2:若将问题1中“学号”改为“01—05的学生”,其余不变,那么由A到B能否构成函数?

问题3:若学号04的学生上次考试因病缺考,无成绩,那么对问题1学号与成绩能否构成函数?

[设计意图]:通过层层提问,层层回答,让学生对概念中关键词的把握更为准确,对函数概念的理解更为具体,为总结归纳函数概念的本质特征打下基础。

其次,我通过幻灯片的形式展示几组数集的对应关系,让学生分析讨论哪些对应关系能构成函数,在学生深刻认识到函数是非空数集到非空数集的一对一或多对一的对应关系,并能准确把握概念中的关键词后,再着重强强在这两种对应关系中,何为定义域,何为值域,值域和集合B有什么关系,强调函数的三要素,得出两函数相等的条件。

至此,本节课的第三个环节已经完成,对于区间的概念,学生通过预习能够理解课堂上不再多讲,仅在多媒体上进行展示,但会在后面例题的使用中指出注意事项。

在本节课的第四个环节——例题分析中,我重点以例题的形式考查函数的有关概念问题,简单函数的定义域问题以及函数的求值问题,至于分段函数、复合函数的求值及定义域问题,将在下节课予以解决,本环节主要通过学生讨论、展写、展讲、学生互评、教师点评的方式完成知识的巩固,让学生成为课堂的主人。

最后,通过

——总结点评,完善知识体系

——课堂练习,巩固知识掌握

——布置作业,沉淀教学成果

六、教学评价设计

教学是动态生成的过程,课堂上必然会有难以预料的事情发生,具体的教学过程还应根据实际情况加以调整。

最后,引用赫尔巴特的一句名言结束我的说课,那就是“发挥我们教师的创造性,使教育过程成为一种艺术的事业,使我们不聪明的孩子变的聪明,使我们聪明的孩子变的更聪明”。

谢谢大家!



手工制作花蝴蝶手工发饰
怎么给宝宝做一顶好看的帽子
中秋节许愿灯、传统莲花灯的制作方法
送给宝宝的开学礼物,为新学期准备的课表相框
怎么做爱心纯棉口罩
怎么给记事簿加上简洁好看的布艺封面

本类热门作品

  • 《诗四首》说课稿一等奖
  • 用百分数解决问题说课稿一等奖
  • 青蛙吃害虫课后说课
  • 冷热不均引起大气运动说课稿一等奖
  • 秋姑娘的信说课稿一等奖
  • 静电现象说课稿一等奖
  • 《搭船的鸟》说课稿一等奖
  • 七年级数学下《平行线性质》说课稿一等奖
  • 凸透镜说课稿一等奖
  • 初中语文《春》说课稿一等奖